|
以下是一个满足你要求的正交矩阵
\[\left(\begin{matrix} \frac1{\sqrt n}&\frac1{\sqrt n}&\frac1{\sqrt n}&\cdots&\frac1{\sqrt n}&\frac1{\sqrt n}\\ \frac1{\sqrt{1\cdot2}}&\frac{-1}{\sqrt{1\cdot2}}&0&\cdots&0&0\\ \frac1{\sqrt{2\cdot3}}&\frac1{\sqrt{2\cdot3}}&\frac{-2}{\sqrt{2\cdot3}}&\cdots&0&0\\ &\cdots& & \cdots& &\cdots\\ \frac1{\sqrt{(n-1)n}}&\frac1{\sqrt{(n-1)n}}&\frac1{\sqrt{(n-1)n}}&\cdots&\frac1{\sqrt{(n-1)n}}&\frac{-(n-1)}{\sqrt{(n-1)n}} \end{matrix}\right)\]
要构造一个类似的满足一定要求的正交矩阵,也可从一组线性无关的向量出发,由Gram-Schmidt正交化方法得到正交向量组,进而规范化得到正交矩阵。
|