选型宝:在您看来,什么样类型的数据属于主数据,它跟其它的数据是一个什么样的关系?
张金良:主数据有三个标准,第一个就是唯一性,这个好理解,既然做主数据一定是唯一的,不能有重复的,这是唯一性。
第二个就是共享性,主数据一定要是在整个企业的业务系统中能够一直在流转的,各个系统都会使用的,这种是共享性。
第三个是静态性,这个数据是相对于静态,不是变化频率特别高的,不像我们的交易数据可能一分钟变几十次这种,它的数据相对静态。
一般来说我们会拿这三个标准来去进行一个梳理,这是传统的主数据定义的一个概念。当然现在对于主数据可能有一些外延或者有一些管理方式的变化,但是它的数据层面界定,我们基本上还是以这个为主。
业务数据之间跟主数据的关系,其实就是主数据是业务数据的基础,主数据到了各个业务系统,我会去补充它的一些业务属性,这样的话这个数据可能会更加丰富。
同时还有一些业务数据,交易性的数据,在跑的时候其实是拿主数据作为基础数据来去生成的。所以主数据是所有数据里边最基础、最核心的一部分。
选型宝:一般而言,企业实施主数据系统,会经历怎么样的一个历程?
张金良:一般来讲,分为以下几步:
第一步 主数据的界定
我们要去做一些宣贯,跟客户讨论,他们什么样的数据是主数据,这个过程叫主数据的界定,或者叫主数据识别。界定的标准就是刚才说的唯一性、共享性、静态性。
第二步 确定主数据的维护流程、标准规范
访谈完之后,确定其这些数据维护的标准规范,如果是合理的,我可以研究它们,如果有一些可以变化,可以去改变,或者优化的,我们会给出一些意见,要细到字段级,我的数据类型是什么样的、大小,长度等等,这是一些主数据标准上面的东西。
同时也要帮客户梳理数据维护流程,未来参与这个流程大概都是谁,每一个流程节点的角色,应该是什么样的人,推荐什么样的人去担任这样的职务,去负责这一块。
因为你这个数据标准它也不是说一成不变的,之前定完之后,后边还会经常有一些变化,这个时候一定要有专门的人或者是组织办这个事。
![]()
第三步 历史数据清洗,进入主数据系统
数据清洗是主数据里边实施的一个很大的部分。数据如果质量不高,是脏数据、乱数据,进了主数据系统里,它还是脏乱的。如果没有数据清洗,我只不过是把脏数据,从这个地方拿了一个备份,放到另外一个地方,没有解决根本的问题。
结合确定的标准规范,对历史数据进行清洗,确保清洗以后,干净的数据进入主数据管理系统。
![]()
第四步 数据映射
清洗以后,主数据系统里存的是唯一可信的数据,在业务系统中,可能存在于重复的数据,或者数据质量很差,在这种情况下,要去做这种映射。
主数据管理系统把清洗过的数据,回推给业务系统,然后再一个保留映射的关系,因为交易在跑,如果把数据完全改的话,可能就原来的这个系统单据,这种历史数据可能走不下去了,所以说可能是要有映射关系,有一个过渡的过程。
选型宝:作为一种实施风险比较高的项目,您认为,可能导致主数据管理项目失败的因素有哪些?
张金良:其实从主数据管理来讲,实施难点主要在于几个方面:
1、怎样驱动业务部门落实新的管理规范
一般好多企业是这样,使用业务系统我要去使,但是都会认为整个数据的维护管理都应该是IT的事。
实际情况是,好多数据其实是从业务部门来的,这种情况下它在界定数据维护流程的时候,制度规范很难去往下推。人人都愿意享受数据规范后的便利,但是不一定愿意承受规范带来的束缚。
2、历史数据的清洗,这是一个脏活累活
另外一个点很重要,就是数据清洗,以前这个历史数据哪些数据能进主数据,要进之前,一定要做清洗,这步很关键的。
理论上其实每条每个字段都要过了,所以这个会比较苦,量会比较大,用我们的话讲就是干脏活累活的。
这一步,也是很重要的一个潜在风险,是关系到项目成败的关键。
选型宝:站在客户的角度看,您认为选择一款主数据管理平台,应该重点考察哪些维度?
张金良:如果以客户角度来讲,选择一个主数据平台,应该从以下角度考察:
▣ 第一,易用性
是不是非常好用,是不是非常容易上手,然后是不是我业务部门就能去使,产品做的足够易用,才更容易减少业务部门的抵触情绪。
▣ 第二,扩展性
就是刚才说的或者是叫业务响应性,如果数据的结构、标准发生了变化,能不能在第一时间能够响应业务的要求,而不是说再去找原厂重新开发,重新搭建结构、重新部署等等一系列东西,那可能这一系列时间过去之后,那个最佳时机已经过去了。
▣ 第三,公司和产品的持久性
因为主数据来讲,它这个核心数据是非常重要的数据。这家公司一定要未来看到它是一个持续发展的公司,不能说过几年这公司都没了,那我这个系统,我的这么重要的数据没有人来去维护,没有去做更新,这也是很关键的。
▣ 第四,实施人员的业务能力
因为看似只是纯数据的一个东西,但是你要对它的业务要有一些比较深的了解,你能给他一些经验,比如说哪个行业里边这个数据一般来说怎么维护,然后一般来说定义的数据标准什么样的,我的数据的质量属性一般是哪一些,这有给他一些指导。
▣ 第五,项目周期
这块放到最后,其实很重要。
很多客户都会想实施周期短,因为一旦发现数据质量问题,就肯定想越快越好,所以说项目实施周期也是非常重要,就是我能不能尽快的在半年以内把这个数据治理好。
这样的好处是,实施周期短,未来扩展也相对容易。
举一个很简单的例子,我们在国外有一些做零售行业的,他们做产品信息的时候,做产品发布。
产品发布我们知道,新产品发布上市的时候可能就几天的时间。如果它这个东西有发生调整,自己不会调,再找到原厂去给你做,就会非常麻烦。
所以这个其实某种意义上不是一个成本的问题,而是敏捷性的问题,今天大家都是竞争特别激烈,所以业务部门会对你IT部门提出极高要求,你这为什么数据还没给我录进去?我要赶紧卖了。
所以这样一个情况下就要求你必须有一个特别高弹性的,高敏捷的一个工具,能够帮你去实现这样一种能力。


雷达卡



京公网安备 11010802022788号







