#model
model
{
for (s in 1:N){
for(t in 1:M){
y[s,t]~dpois(mu[s,t])
mu[s,t] <-e[s,t]*rr[s,t]
log(rr[s,t])<-a0+u
}
psi[s,1]~dnorm(0,tau.psi)
for(t in 2:M){
psi[s,t]~dnorm(psi[s,t-1],tau.psi)
}
v
}
# CAR prior distribution for random effects:
u[1:N]~car.normal(adj[],weights[],num[],tau.u)
for(x in 1:sumNumNeigh){
weights[x]<-1}
}
g[t]~dnorm(0,tau.g)
}
j[1:M] ~ car.normal(adj[], weights[], num[], tau.j)
for(t in 1:1) {
weights[t] <- 1; adj[t] <- t+1; num[t] <- 1
}
for(t in 2:(M-1)) {
weights[2+(t-2)*2] <- 1; adj[2+(t-2)*2] <- t-1
weights[3+(t-2)*2] <- 1; adj[3+(t-2)*2] <- t+1; num[t] <- 2
}
for(t in M:M) {
weights[(M-2)*2 + 2] <- 1; adj[(M-2)*2 + 2] <- t-1; num[t] <- 1
}
tau.psi<-pow(sd(psi),2)
pow(sd(psi),2)~dgamma(0.5,0.0005)
tau.u<-1/pow(sd(u),2)
pow(sd(u),2)~dgamma(0.5,0.0005)
tau.v<-1/pow(sd(v),2)
pow(sd(v),2)~dgamma(0.5,0.0005)
tau.j ~ dgamma( 0.5,0.0005)
for(t in 1:M) { day[t] <- t }
tau.g<-1/pow(sd(g),2)
pow(sd(g),2)~dgamma(0.5,0.0005)
a0~dflat()
beta1~dnorm(0.0,tau.beta1)
tau.beta1<-1/pow(sd(beta1),2)
sd(beta1)~dunif(0,10)
beta2~dnorm(0.0,tau.beta2)
tau.beta2<-1/pow(sd(beta2),2)
sd(beta2)~dunif(0,10)
beta3~dnorm(0.0,tau.beta3)
tau.beta3<-1/pow(sd(beta3),2)
sd(beta3)~dunif(0,10)
beta4~dnorm(0.0,tau.beta4)
tau.beta4<-1/pow(sd(beta4),2)
sd(beta4)~dunif(0,10)
beta5~dnorm(0.0,tau.beta5)
tau.beta5<-1/pow(sd(beta5),2)
sd(beta5)~dunif(0,10)
beta6~dnorm(0.0,tau.beta6)
tau.beta6<-1/pow(sd(beta6),2)
sd(beta6)~dunif(0,10)
beta7~dnorm(0.0,tau.beta7)
tau.beta7<-1/pow(sd(beta7),2)
sd(beta7)~dunif(0,10)
beta8~dnorm(0.0,tau.beta8)
tau.beta8<-1/pow(sd(beta8),2)
sd(beta8)~dunif(0,10)
beta9~dnorm(0.0,tau.beta9)
tau.beta9<-1/pow(sd(beta9),2)
sd(beta9)~dunif(0,10)
}
#data
list(N=3, M=4, e=structure(.Data=c(1,2,3,1,2,3,1,2,3,1,2,3), .Dim=c(3,4)), y=structure( .Date=c(1,2,3,4,5,6,7,8,9,10,11,12), .Dim=c(3,4)), fs=structure(.Data=c(1,2,3,1,2,3,1,2,3,1,2,3), .Dim=c(3,4)), js=structure(.Data=c(1,2,3,1,2,3,1,2,3,1,2,3), .Dim = c(3,4)), qw=structure(.Data=c(1,2,3,1,2,3,1,2,3,1,2,3), .Dim = c(3,4)), qy=structure(.Data=c(1,2,3,1,2,3,1,2,3,1,2,3), .Dim = c(3,4)), rz=structure(.Data=c(1,2,3,1,2,3,1,2,3,1,2,3), .Dim = c(3,4)), qd=structure(.Data=c(1,2,3,1,2,3,1,2,3,1,2,3), .Dim = c(3,4)), ab=structure(.Data=c(1,2,3,1,2,3,1,2,3,1,2,3), .Dim = c(3,4)), ac=structure(.Data=c(1,2,3,1,2,3,1,2,3,1,2,3), .Dim = c(3,4)), ad=structure(.Data=c(1,2,3,1,2,3,1,2,3,1,2,3), .Dim = c(3,4)),
num=c(3,5,3,5,8,5,5,8,5,3,5,3),
adj=c(5,4,2,
6,5,4,3,1,
6,5,2,
8,7,5,2,1,
9,8,7,6,4,3,2,1,
9,8,5,3,2,
11,10,8,5,4
12,11,10,9,7,6,5,4,
12,11,8,6,5,
11,8,7,
12,10,9,8,7,
11,9,8),
sumNumNeigh = 54))


雷达卡


京公网安备 11010802022788号







