- "x1" "x2" "x3" "x4" "x5" "x6" "x7" "x8" "x9" "x10" "x11" "y"
- 1 1 -1 1 1 1 -1 -1 -1 1 -1 6.1
- 1 -1 1 1 1 -1 -1 -1 1 -1 1 4.7
- -1 1 1 1 -1 -1 -1 1 -1 1 1 4.6
- 1 1 1 -1 -1 -1 1 -1 1 1 -1 5.9
- 1 1 -1 -1 -1 1 -1 1 1 -1 1 7
- 1 -1 -1 -1 1 -1 1 1 -1 1 1 5.8
- -1 -1 -1 1 -1 1 1 -1 1 1 1 5.7
- -1 -1 1 -1 1 1 -1 1 1 1 -1 6.6
- -1 1 -1 1 1 -1 1 1 1 -1 -1 5.8
- 1 -1 1 1 -1 1 1 1 -1 -1 -1 5.9
- -1 1 1 -1 1 1 1 -1 -1 -1 1 5.9
- -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 4.8
+1 和 -1 是 factor levels
- df1=lm(y~
- as.factor(x1)+
- as.factor(x2)+
- as.factor(x3)+
- as.factor(x4)+
- as.factor(x5)+
- as.factor(x6)+
- as.factor(x7)+
- as.factor(x8)+
- as.factor(x9)+
- as.factor(x10)+
- as.factor(x11),
- data=d.final
- )
-
- summary(df1)
- Call:
- lm(formula = y ~ as.factor(x1) + as.factor(x2) + as.factor(x3) +
- as.factor(x4) + as.factor(x5) + as.factor(x6) + as.factor(x7) +
- as.factor(x8) + as.factor(x9) + as.factor(x10) + as.factor(x11),
- data = d.final)
- Residuals:
- ALL 12 residuals are 0: no residual degrees of freedom!
- Coefficients:
- Estimate Std. Error t value Pr(>|t|)
- (Intercept) 4.8000 NA NA NA
- as.factor(x1)1 0.3333 NA NA NA
- as.factor(x2)1 0.3000 NA NA NA
- as.factor(x3)1 -0.2667 NA NA NA
- as.factor(x4)1 -0.5333 NA NA NA
- as.factor(x5)1 0.1667 NA NA NA
- as.factor(x6)1 0.9333 NA NA NA
- as.factor(x7)1 0.2000 NA NA NA
- as.factor(x8)1 0.4333 NA NA NA
- as.factor(x9)1 0.4333 NA NA NA
- as.factor(x10)1 0.1000 NA NA NA
- as.factor(x11)1 -0.2333 NA NA NA
- Residual standard error: NaN on 0 degrees of freedom
- Multiple R-squared: 1, Adjusted R-squared: NaN
- F-statistic: NaN on 11 and 0 DF, p-value: NA
我只要一个model 里面有 11个 main effects
该怎么fit?
谢谢!


雷达卡




京公网安备 11010802022788号







