楼主: frody
5252 7

[原创博文] 请教:SAS求组合数函数是哪个 [推广有奖]

  • 0关注
  • 0粉丝

大专生

81%

还不是VIP/贵宾

-

威望
0
论坛币
558 个
通用积分
0
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
1041 点
帖子
56
精华
0
在线时间
72 小时
注册时间
2009-10-11
最后登录
2016-10-31

楼主
frody 发表于 2010-4-20 10:48:08 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
找了好久一直没找到。在此先谢了。
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝


回帖推荐

crackman 发表于4楼  查看完整内容

comb(n,r) Returns the number of combinations of n elements taken r at a time (0 ≤ r ≤ n). Use comb to determine the total possible number of groups for a given number of items. A combina- tion is any set or subset of items, regardless of their order. Combinations are distinct from permutations, for which the order is significant. comb(n,r) also is known as the binomial coefficient and is ...

本帖被以下文库推荐

沙发
ljw101708 发表于 2010-4-20 10:54:29
hehe  看看  ,

藤椅
soporaeternus 发表于 2010-4-20 11:23:12
组合comb
排列perm
n!fact
已有 2 人评分论坛币 学术水平 热心指数 信用等级 收起 理由
Tigflanker + 5 + 3 + 3 + 3 观点有启发
双修阁主の + 1 + 1 精彩帖子

总评分: 论坛币 + 5  学术水平 + 4  热心指数 + 4  信用等级 + 3   查看全部评分

Let them be hard, but never unjust

板凳
crackman 发表于 2010-4-20 16:09:06
comb(n,r)
Returns the number of combinations of n elements taken r at
a time (0 ≤  r ≤ n). Use comb to determine the total possible
number of groups for a given number of items. A combina-
tion is any set or subset of items, regardless of their order.
Combinations are distinct from permutations, for which the
order is significant. comb(n,r) also is known as the binomial
coefficient and is read “n choose r”. The number of combina-
tions is n!/(r!(n–r)!) where n and r are integers and the symbol
! denotes a factorial.  comb(n,r) is the same as  fact(n)/
(fact(r)*(fact(n-r)) . See also: fact (p. 66), perm (p. 115).
Examples:
comb(8,0) → 1.
comb(8,1) → 8.
comb(8,2) → 28.
comb(8,6) → 28.
comb(8,8) → 1.
已有 2 人评分经验 论坛币 学术水平 热心指数 收起 理由
bakoll + 3 + 3 精彩帖子
双修阁主の + 1 + 1 精彩帖子

总评分: 经验 + 3  论坛币 + 3  学术水平 + 1  热心指数 + 1   查看全部评分

报纸
crackman 发表于 2010-4-20 16:09:57
perm(n[,r])
Returns the number of permutations of n elements taken r at
a time (0 ≤ r ≤ n). If r is omitted, perm(n) returns the factorial
of n. A permutation is any set or subset of items where order
is significant. Permutations are distinct from combinations,
for which order doesn’t matter. The number of permutations
is  n!/(n–r)! where  n and  r are integers and the symbol !
denotes the factorial.  perm(n,r) is the same as  fact(n)/
fact(n-r). See also: comb (p. 45), fact (p. 66).
Examples:
perm(8,0) → 1.
perm(8,1) → 8.
perm(8,2) → 56.
perm(8,6) → 20160.
perm(8,8) → 40320.
perm(8) → 40320.

地板
crackman 发表于 2010-4-20 16:10:47
fact(n)
Returns the factorial of n (≥ 0), given by n! = 1 × 2 ×  ⋅⋅⋅ × n,
where n is an integer. The special case 0! is defined to be equal
to 1. Note that fact(n) equals gamma(n+1).
Examples:
fact(0) → 1.
fact(1) → 1.
fact(8) → 40320.
fact(-8) → . (missing—n < 0).
fact(8.5) → . (missing—noninteger n).
fact(int(8.5)) → 40320.
fact(20) → 2.432902E18.

7
frody 发表于 2010-4-20 23:26:20
恩,谢谢各位了

8
双修阁主の 发表于 2014-3-20 10:56:19
Thanks crackman and soporaeternus !

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注cda
拉您进交流群
GMT+8, 2025-12-31 23:48