我是个生手,各位大侠帮忙看一下这个logit回归的结果吧,应该怎么分析呢,要重点看哪几个指标,robust std.Err怎么用??
先谢谢啦
logit y lnwealth lnland lnpeople lnprice vocation education,robust
Iteration 0: log pseudolikelihood = -372.40801
Iteration 1: log pseudolikelihood = -313.3785
Iteration 2: log pseudolikelihood = -306.10719
Iteration 3: log pseudolikelihood = -306.03406
Iteration 4: log pseudolikelihood = -306.03403
Iteration 5: log pseudolikelihood = -306.03403
Logistic regression Number of obs = 784
Wald chi2(6) = 100.27
Prob > chi2 = 0.0000
Log pseudolikelihood = -306.03403 Pseudo R2 = 0.1782
------------------------------------------------------------------------------
| Robust
y | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
lnwealth | -.9215884 .1837802 -5.01 0.000 -1.281791 -.5613858
lnland | 1.204206 .2130224 5.65 0.000 .7866895 1.621722
lnpeople | .0082254 .267732 0.03 0.975 -.5165198 .5329705
lnprice | -.2766078 .1438968 -1.92 0.055 -.5586404 .0054248
vocation | -.823991 .1565792 -5.26 0.000 -1.130881 -.5171015
education | -.093117 .0266434 -3.49 0.000 -.1453371 -.0408969
_cons | 8.458669 1.49346 5.66 0.000 5.531541 11.3858
------------------------------------------------------------------------------
. logistic y lnwealth lnland lnpeople lnprice vocation education,robust
Logistic regression Number of obs = 784
Wald chi2(6) = 100.27
Prob > chi2 = 0.0000
Log pseudolikelihood = -306.03403 Pseudo R2 = 0.1782
------------------------------------------------------------------------------
| Robust
y | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
lnwealth | .3978865 .0731237 -5.01 0.000 .2775398 .570418
lnland | 3.33411 .71024 5.65 0.000 2.196114 5.061799
lnpeople | 1.008259 .2699433 0.03 0.975 .5965932 1.703987
lnprice | .7583519 .1091244 -1.92 0.055 .5719862 1.00544
vocation | .4386774 .0686877 -5.26 0.000 .3227489 .5962463
education | .9110869 .0242745 -3.49 0.000 .8647308 .9599281
------------------------------------------------------------------------------
. mfx compute
Marginal effects after logistic
y = Pr(y) (predict)
= .86203594
------------------------------------------------------------------------------
variable | dy/dx Std. Err. z P>|z| [ 95% C.I. ] X
---------+--------------------------------------------------------------------
lnwealth | -.1096045 .0224 -4.89 0.000 -.153504 -.065705 7.37055
lnland | .1432162 .02526 5.67 0.000 .093705 .192728 1.29973
lnpeople | .0009782 .03184 0.03 0.975 -.061429 .063385 1.4069
lnprice | -.032897 .01705 -1.93 0.054 -.066308 .000514 .512564
vocation | -.0979972 .01902 -5.15 0.000 -.135271 -.060724 1.22704
educat~n | -.0110744 .00318 -3.49 0.000 -.017298 -.004851 2.76658
------------------------------------------------------------------------------



雷达卡



京公网安备 11010802022788号







