楼主: smilingfox
6691 8

[资料下载] Introduction to Semi-Supervised Learning [推广有奖]

  • 0关注
  • 1粉丝

已卖:572份资源

初中生

90%

还不是VIP/贵宾

-

威望
0
论坛币
563 个
通用积分
0.6000
学术水平
1 点
热心指数
2 点
信用等级
1 点
经验
729 点
帖子
23
精华
0
在线时间
5 小时
注册时间
2009-5-2
最后登录
2018-1-1

楼主
smilingfox 发表于 2011-2-19 12:30:10 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
Introduction to Semi-Supervised Learning (Synthesis Lectures on Artificial Intelligence and Machine Learning)Xiaojin Zhu (Author), Andrew B. Goldberg (Author), Ronald Brachman (Editor), Thomas Dietterich (Editor)  
Product Description
Semi-supervised learning is a learning paradigm concerned with the study of how computers and natural systems such as humans learn in the presence of both labeled and unlabeled data. Traditionally, learning has been studied either in the unsupervised paradigm (e.g., clustering, outlier detection) where all the data is unlabeled, or in the supervised paradigm (e.g., classification, regression) where all the data is labeled.The goal of semi-supervised learning is to understand how combining labeled and unlabeled data may change the learning behavior, and design algorithms that take advantage of such a combination. Semi-supervised learning is of great interest in machine learning and data mining because it can use readily available unlabeled data to improve supervised learning tasks when the labeled data is scarce or expensive. Semi-supervised learning also shows potential as a quantitative tool to understand human category learning, where most of the input is self-evidently unlabeled. In this introductory book, we present some popular semi-supervised learning models, including self-training, mixture models, co-training and multiview learning, graph-based methods, and semi-supervised support vector machines. For each model, we discuss its basic mathematical formulation. The success of semi-supervised learning depends critically on some underlying assumptions. We emphasize the assumptions made by each model and give counterexamples when appropriate to demonstrate the limitations of the different models. In addition, we discuss semi-supervised learning for cognitive psychology. Finally, we give a computational learning theoretic perspective on semi-supervised learning, and we conclude the book with a brief discussion of open questions in the field.

Product Details
  • Paperback: 130 pages
  • Publisher: Morgan and Claypool Publishers (June 29, 2009)
  • Language: English
  • ISBN-10: 1598295470
  • ISBN-13: 978-1598295474
  • Product Dimensions: 9.1 x 7.3 x 0.5 inches

在论坛里找过一次,没有找到,所以发了上来。
第一次上传资料-_-!
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:introduction troduction Learning earning Learn machine learning

已有 1 人评分经验 学术水平 热心指数 信用等级 收起 理由
狂热的爱好者 + 60 + 1 + 1 + 1 精彩帖子

总评分: 经验 + 60  学术水平 + 1  热心指数 + 1  信用等级 + 1   查看全部评分

本帖被以下文库推荐

沙发
jgchen1966(真实交易用户) 发表于 2014-12-16 11:20:19
thnaak you

藤椅
法/Moses(真实交易用户) 发表于 2015-10-26 10:54:57
多谢楼主大大

板凳
mark8865(真实交易用户) 发表于 2016-7-4 15:24:49
谢谢楼主分享,很有帮助的读物!

报纸
jimmycao718(未真实交易用户) 发表于 2016-9-6 14:50:13
感谢楼主的精彩分享

地板
CDEFGHQ(未真实交易用户) 发表于 2016-9-11 20:43:16

感谢楼主的精彩分享

7
eeabcde(真实交易用户) 发表于 2016-10-14 19:22:17
感谢楼主的精彩分享

8
heiyaodai(真实交易用户) 发表于 2018-5-20 11:26:44
谢谢分享!

9
jameszhang12(真实交易用户) 发表于 2020-7-30 17:32:59
多谢分享!

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-5 14:29