解:
$\begin{align*}I(\alpha )&=\int_{0}^{+\infty }\frac{dx}{(1+\alpha ^2x^2)^2}\\\\&=\frac{1}{\alpha ^2}\int_{0}^{+\infty }\frac{\alpha ^2xdx}{x(1+\alpha ^2x^2)^2}\\\\&=\frac{1}{2\alpha ^2}\int_{0}^{+\infty }\frac{d(1+\alpha ^2x^2)}{x(1+\alpha ^2x^2)^2}\\\\&=\frac{1}{2\alpha ^2}(-\frac{1}{x(1+\alpha ^2x^2)}|_0^{+\infty}-\int_{0}^{+\infty }\frac{dx}{x^2(1+\alpha ^2x^2)})\\\\&=\frac{1}{2\alpha ^2}(\frac{1}{x}(x\to 0)-\int_{0}^{+\infty }(\frac{1}{x^2}-\frac{\alpha ^2}{1+\alpha ^2x^2})dx)\\\\&=\frac{1}{2}\int_{0}^{+\infty }\frac{1}{1+\alpha ^2x^2}dx\\\\&=\frac{1}{2\alpha}\arctan \alpha x|_0^{+\infty}\\\\&=\frac{\pi}{4\alpha }.\end{align*}$


雷达卡
京公网安备 11010802022788号







