解:
由方向导数的定义,得
$\displaystyle \frac{\partial f}{\partial l}|_{(P)}=\frac{\partial f}{\partial x}\cos \alpha +\frac{\partial f}{\partial y}\cos \beta +\frac{\partial f}{\partial z}\cos \gamma =\sqrt{2}(x-y),$
因为动点$P$满足椭球方程这个条件,所以利用拉格朗日条件极值法,令
$\displaystyle F(x,y,z)=\sqrt{2}(x-y)+L(x^2+2y^2+3z^2-1),$
$\displaystyle F'_x=\sqrt{2}+2Lx=0,F'_y=-\sqrt{2}+4Ly=0,F'_z=6Lz=0.$
解之得
$\displaystyle z=0,x=-2y,$
$\displaystyle x=\pm \frac{\sqrt{6}}{3},y=\mp \frac{\sqrt{6}}{6},$
比较大小,有
$\displaystyle P_1(\frac{\sqrt{6}}{3},-\frac{\sqrt{6}}{6},0),\frac{\partial f}{\partial l}|_{\max} =\sqrt{3},$
$\displaystyle P_2(\frac{-\sqrt{6}}{3},\frac{\sqrt{6}}{6},0),\frac{\partial f}{\partial l}|_{\min }=-\sqrt{3},$


雷达卡
京公网安备 11010802022788号







