证明:
$\displaystyle \because |g(x_1)-g(x_2)|\leq |g(x_1)-f(x_1)|+|f(x_2)-g(x_2)|+|f(x_1)-f(x_2)|,$
由已知条件,可知有
$\displaystyle \forall \varepsilon > 0,\exists X\in[a,+\infty),x_1,x_2> X,s.t.$
$\displaystyle |f(x_2)-g(x_2)|< \frac{\varepsilon }{3},|f(x_1)-f(x_2)|< \frac{\varepsilon }{3},$
对上述$\varepsilon,x_1,x_2$,
$\displaystyle \exists \delta > 0,\forall x_1,x_2\in [a,+\infty),|x_1-x_2|< \delta ,s.t.$
$\displaystyle |f(x_1)-f(x_2)|< \frac{\varepsilon}{3} ,$
$\begin{align*}\therefore |g(x_1)-g(x_2)|&\leq |g(x_1)-f(x_1)|+|f(x_2)-g(x_2)|\\\\&+|f(x_1)-f(x_2)|< \frac{\varepsilon }{3}+ \frac{\varepsilon }{3}+ \frac{\varepsilon }{3}=\varepsilon .\end{align*}$
命题成立。


雷达卡
京公网安备 11010802022788号







