6、解
$\displaystyle \Omega :x^2+y^2+z^2=4,z\geq 0.$
$\displaystyle dS=\sqrt{z_x^2+z_y^2+1}dxdy.$
$\begin{align*}I&=\iint_S\frac{dS}{\sqrt{x^2+y^2+(z+2)^2}}\\&=\iint_D\frac{2dxdy}{\sqrt{2(x^2+y^2)+2\sqrt{4-x^2-y^2}+4}\sqrt{4-x^2-y^2}}\\&=\sqrt{2}\int_{0}^{\frac{\pi}{2}}d\theta \int_{0}^{2}\frac{rdr}{\sqrt{r^2+\sqrt{4-r^2}+2}\sqrt{4-r^2}}\\&=\frac{\sqrt{2}\pi}{4}\int_{0}^{2}\frac{-d\sqrt{4-r^2}}{\sqrt{-(4-r^2)+\sqrt{4-r^2}+6}\sqrt{4-r^2}}\\&=\frac{\sqrt{2}\pi}{4}\int_{0}^{2}\frac{dt}{\sqrt{6\frac{1}{4}-(t-\frac{1}{2})^2}},(t=\sqrt{4-r^2})\\&=\frac{\sqrt{2}\pi}{4}\arcsin (\frac{t-\frac{1}{2}}{\sqrt{6\frac{1}{4}}})|_0^2\\&=\frac{\sqrt{2}\pi}{4}(\arcsin \frac{3}{5}+\arcsin \frac{1}{5}).\end{align*}$


雷达卡
京公网安备 11010802022788号







