2019 四川大学数学竞赛(非专业组)
解:
利用换无法,令:
$\displaystyle 3x+4y=u,4x-3y=v.$
$\displaystyle D\Rightarrow D',$
$\displaystyle u^2+v^2=25(x^2+y^2)\leq 25.$
$\displaystyle |J|=|\frac{\partial(x,y)}{\partial (u,v)}|^{-1}=\frac{1}{25}.$
$\displaystyle I=\iint_D\sqrt{25-(3x+4y)^2}dxdy=\frac{1}{25}\iint_{D'}\sqrt{25-u^2}dudv.$
$\displaystyle u=r\cos\theta ,v=r\sin\theta ,0\leq r\leq 5,0\leq \theta \leq 2\pi.$
$\displaystyle \begin{align*}I&=\frac{1}{25}\int_{0}^{2\pi}d\theta \int_{0}^{5}r\sqrt{25-r^2\cos^2\theta }dr\\\\&=-\frac{1}{25}\int_{0}^{2\pi}\frac{1}{\cos^2\theta }\cdot \frac{2}{3}\cdot (25-r^2\cos^2\theta )^\frac{3}{2}|_0^5d\theta \\\\&=\frac{10}{3}\int_{0}^{2\pi}\frac{1-\sin^3\theta }{\cos^2\theta }d\theta \end{align*}$