证明:
由已知,用泰勒展开将函数在$x=\frac{a+b}{2}$点展开
$\begin{align*}f(x)&=f(\frac{a+b}{2})+f'(\frac{a+b}{2})(x-\frac{a+b}{2})+\frac{1}{2!}f''(\xi)(x-\frac{a+b}{2})^2,(\xi\in(a,\frac{a+b}{2}).f''(x)\leq 0)\\\\&\leq f(\frac{a+b}{2})+f'(\frac{a+b}{2})(x-\frac{a+b}{2}).\end{align*}$
再求积分
$\begin{align*}\int_{a}^{b}f(x)dx&\leq \int_{a}^{b}f(\frac{a+b}{2})dx+f'(\frac{a+b}{2})\int_{a}^{b}(x-\frac{a+b}{2})dx\\\\&=(b-a)f(\frac{a+b}{2})+f'(\frac{a+b}{2})(\frac{1}{2}x^2-\frac{a+b}{2}x)|_a^b\\\\&=(b-a)f(\frac{a+b}{2}).\end{align*}$
注:此题还可用凹函数性质($f''(x)<=0$)来解。


雷达卡
京公网安备 11010802022788号







