2022年湖南大学数学竞赛(非数学类)竞赛试题
证明:
由已知,不妨设:
$$0< \lambda_1< \lambda_2< \cdots < \lambda_n< 1,\lambda_1+\lambda_2+\cdots +\lambda_n=1,$$
令:
$$\eta_k=\frac{\lambda_1+\lambda_2+\cdots +\lambda_k}{\lambda_1+\lambda_2+\cdots +\lambda_n}=\lambda_1+\lambda_2+\cdots +\lambda_k.k=0,1,2,\cdots ,n,\eta _0=0,\eta _n=1.\eta _k\in[0,1].$$
由连续函数的介值定理,
$$\exists c_k\in[0,1]s.t.f(c_k)=\eta _k,c_0=0,c_{n}=1.$$
由Lagrange中值定理,存在$\xi_{k+1}\in(c_k,c_{k+1}) ,s.t.$
$$ f(c_{k+1})-f(c_k)=(c_{k+1}-c_k)f'(\xi_{k+1}).$$
$\Rightarrow (c_1-0)(\lambda _1+\lambda _2+\cdots +\lambda _n)=\frac{\lambda _1}{f'(\xi_1)},$
$(c_2-c_1)(\lambda _1+\lambda _2+\cdots +\lambda _n)=\frac{\lambda _2}{f'(\xi_2)},$
$\cdots ,$
$(1-c_{n-1})(\lambda _1+\lambda _2+\cdots +\lambda _n)=\frac{\lambda _n}{f'(\xi_n)},$
将上述$n$个等式相加,得
$$\frac{\lambda _1}{f'(\xi_1)}+\frac{\lambda _2}{f'(\xi_2)}+\cdots +\frac{\lambda _n}{f'(\xi_n)}=\lambda _1+\lambda _2+\cdots +\lambda _n=1.$$