摘要翻译:
我们考虑了一个利率模型,其中短期利率由Duffie、Filipovic和Schachermayer意义上的一维仿射过程给出。我们证明了在这样的模型中,屈服曲线只能是正常的、逆的或驼峰的(即被赋予一个单一的局部最大值)。Eachcase可以用目前短率上的简单条件来表征。给出了短速率过程收敛到极限分布的条件,并用其累积母函数描述了极限分布。我们将我们的结果应用于Vasicek模型、CIR模型、一个带有附加跳跃的CIR模型和一个Ornstein-Uhlenbeck型模型。
---
英文标题:
《Yield Curve Shapes and the Asymptotic Short Rate Distribution in Affine
One-Factor Models》
---
作者:
Martin Keller-Ressel, Thomas Steiner
---
最新提交年份:
2007
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Pricing of Securities 证券定价
分类描述:Valuation and hedging of financial securities, their derivatives, and structured products
金融证券及其衍生产品和结构化产品的估值和套期保值
--
一级分类:Mathematics 数学
二级分类:Probability 概率
分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory
概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论
--
---
英文摘要:
We consider a model for interest rates, where the short rate is given by atime-homogenous, one-dimensional affine process in the sense of Duffie,Filipovic and Schachermayer. We show that in such a model yield curves can onlybe normal, inverse or humped (i.e. endowed with a single local maximum). Eachcase can be characterized by simple conditions on the present short rate. Wegive conditions under which the short rate process will converge to a limitdistribution and describe the limit distribution in terms of its cumulantgenerating function. We apply our results to the Vasicek model, the CIR model,a CIR model with added jumps and a model of Ornstein-Uhlenbeck type.
---
PDF链接:
https://arxiv.org/pdf/0704.0567


雷达卡



京公网安备 11010802022788号







