摘要翻译:
在不完全市场中,通过假设保险公司要求以预先指定的瞬时夏普比率的形式对其风险进行补偿,我们建立了一个随机死亡率下寿险的定价规则。我们的估值公式满足了许多理想的属性,其中许多属性与标准差溢价原理相同。本文的主要结果是,当合同数目接近无穷大时,每个合同的价格解一个线性偏微分方程。人们可以把极限价格解释为关于等价鞅测度的期望。另一个重要的结果是,如果风险率是随机的,那么风险调整后的保费大于净保费,即使合同数量接近无穷大。我们给出了一个数值例子来说明我们的结果,以及相应的算法。
---
英文标题:
《Pricing Life Insurance under Stochastic Mortality via the Instantaneous
Sharpe Ratio: Theorems and Proofs》
---
作者:
Virginia R. Young
---
最新提交年份:
2007
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Pricing of Securities 证券定价
分类描述:Valuation and hedging of financial securities, their derivatives, and structured products
金融证券及其衍生产品和结构化产品的估值和套期保值
--
一级分类:Mathematics 数学
二级分类:Analysis of PDEs 偏微分方程分析
分类描述:Existence and uniqueness, boundary conditions, linear and non-linear operators, stability, soliton theory, integrable PDE's, conservation laws, qualitative dynamics
存在唯一性,边界条件,线性和非线性算子,稳定性,孤子理论,可积偏微分方程,守恒律,定性动力学
--
一级分类:Mathematics 数学
二级分类:Optimization and Control 优化与控制
分类描述:Operations research, linear programming, control theory, systems theory, optimal control, game theory
运筹学,线性规划,控制论,系统论,最优控制,博弈论
--
---
英文摘要:
We develop a pricing rule for life insurance under stochastic mortality in an incomplete market by assuming that the insurance company requires compensation for its risk in the form of a pre-specified instantaneous Sharpe ratio. Our valuation formula satisfies a number of desirable properties, many of which it shares with the standard deviation premium principle. The major result of the paper is that the price per contract solves a linear partial differential equation as the number of contracts approaches infinity. One can interpret the limiting price as an expectation with respect to an equivalent martingale measure. Another important result is that if the hazard rate is stochastic, then the risk-adjusted premium is greater than the net premium, even as the number of contracts approaches infinity. We present a numerical example to illustrate our results, along with the corresponding algorithms.
---
PDF链接:
https://arxiv.org/pdf/0705.1297


雷达卡



京公网安备 11010802022788号







