摘要翻译:
讨论了随机动力学的随机作用原理。我们给出了第一个数值扩散实验,证明了扩散路径概率与平均拉格朗日作用成指数关系。然后利用这个结果导出一个不确定性测度,该测度以一种模拟热力学第一定律中的热或熵的方式定义。结果表明,路径不确定性(或路径熵)可以用香农信息来度量,经典力学的最大熵原理和最小作用原理可以统一为一个简洁的形式。本文认为,这个作用原理,即最大熵原理,仅仅是机械平衡条件推广到随机动力学情形的结果。
---
英文标题:
《Stochastic action principle and maximum entropy》
---
作者:
Q. A. Wang (ISMANS), F. Tsobnang (ISMANS), S. Bangoup (ISMANS), F.
Dzangue (ISMANS), A. Jeatsa (ISMANS), A. Le M\'ehaut\'e (ISMANS)
---
最新提交年份:
2007
---
分类信息:
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
---
英文摘要:
A stochastic action principle for stochastic dynamics is revisited. We present first numerical diffusion experiments showing that the diffusion path probability depend exponentially on average Lagrangian action. This result is then used to derive an uncertainty measure defined in a way mimicking the heat or entropy in the first law of thermodynamics. It is shown that the path uncertainty (or path entropy) can be measured by the Shannon information and that the maximum entropy principle and the least action principle of classical mechanics can be unified into a concise form. It is argued that this action principle, hence the maximum entropy principle, is simply a consequence of the mechanical equilibrium condition extended to the case of stochastic dynamics.
---
PDF链接:
https://arxiv.org/pdf/704.088


雷达卡



京公网安备 11010802022788号







