摘要翻译:
利用概率方法研究了任意次分布下稀疏连通Hopfield神经网络的瞬态动力学。发展了一个递归格式来确定重叠参数的时间演化。作为例子,对具有二项式、幂律和均匀度分布的网络进行了动力学显式计算。计算结果与大量数值模拟结果吻合较好。结果表明,在平均度相同的情况下,网络性能随着度分布的增加而逐渐提高,对于模式全局存储最有效的度分布是delta函数。
---
英文标题:
《Transient Dynamics of Sparsely Connected Hopfield Neural Networks with
Arbitrary Degree Distributions》
---
作者:
Pan Zhang and Yong Chen
---
最新提交年份:
2007
---
分类信息:
一级分类:Physics 物理学
二级分类:Disordered Systems and Neural Networks 无序系统与神经网络
分类描述:Glasses and spin glasses; properties of random, aperiodic and quasiperiodic systems; transport in disordered media; localization; phenomena mediated by defects and disorder; neural networks
眼镜和旋转眼镜;随机、非周期和准周期系统的性质;无序介质中的传输;本地化;由缺陷和无序介导的现象;神经网络
--
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
---
英文摘要:
Using probabilistic approach, the transient dynamics of sparsely connected Hopfield neural networks is studied for arbitrary degree distributions. A recursive scheme is developed to determine the time evolution of overlap parameters. As illustrative examples, the explicit calculations of dynamics for networks with binomial, power-law, and uniform degree distribution are performed. The results are good agreement with the extensive numerical simulations. It indicates that with the same average degree, there is a gradual improvement of network performance with increasing sharpness of its degree distribution, and the most efficient degree distribution for global storage of patterns is the delta function.
---
PDF链接:
https://arxiv.org/pdf/704.1007


雷达卡



京公网安备 11010802022788号







