楼主: 能者818
376 0

[经济学] 周期策略:一个新的求解概念和算法 非平凡策略形式博弈 [推广有奖]

  • 0关注
  • 6粉丝

会员

学术权威

78%

还不是VIP/贵宾

-

威望
10
论坛币
10 个
通用积分
39.5640
学术水平
0 点
热心指数
1 点
信用等级
0 点
经验
24699 点
帖子
4115
精华
0
在线时间
1 小时
注册时间
2022-2-24
最后登录
2024-12-24

楼主
能者818 在职认证  发表于 2022-3-2 09:15:00 来自手机 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要翻译:
在策略形式博弈中,我们引入了一个新的解概念,称为周期性,用于选择最优策略。这种周期性解的概念为非琐碎的游戏提供了新的见解。在混合策略的策略形式博弈中,周期解产生的每个参与者的效用函数的值等于纳什均衡的值。与纳什策略相反,在这里,每个玩家的收益相对于对手的游戏是稳健的。有时,周期性策略产生更高的效用,有时纳什策略产生更高的效用,但通常这两种策略的效用是一致的。在两个完全信息策略形式的纯策略博弈中,我们正式定义并研究了周期策略,证明了每个非平凡有限博弈至少有一个周期策略,且非平凡意义不退化。在一些使用混合策略的博弈类别中,我们确定了数量特征。特别有趣的是对集体行动游戏的影响,因为在那里集体行动策略可以被纳入一个纯粹的非合作环境。此外,我们还解决了当玩家有一套连续的策略时的周期性问题。
---
英文标题:
《Periodic Strategies: A New Solution Concept and an Algorithm for
  NonTrivial Strategic Form Games》
---
作者:
V.K. Oikonomou, J. Jost
---
最新提交年份:
2018
---
分类信息:

一级分类:Computer Science        计算机科学
二级分类:Computer Science and Game Theory        计算机科学与博弈论
分类描述:Covers all theoretical and applied aspects at the intersection of computer science and game theory, including work in mechanism design, learning in games (which may overlap with Learning), foundations of agent modeling in games (which may overlap with Multiagent systems), coordination, specification and formal methods for non-cooperative computational environments. The area also deals with applications of game theory to areas such as electronic commerce.
涵盖计算机科学和博弈论交叉的所有理论和应用方面,包括机制设计的工作,游戏中的学习(可能与学习重叠),游戏中的agent建模的基础(可能与多agent系统重叠),非合作计算环境的协调、规范和形式化方法。该领域还涉及博弈论在电子商务等领域的应用。
--
一级分类:Economics        经济学
二级分类:Theoretical Economics        理论经济学
分类描述:Includes theoretical contributions to Contract Theory, Decision Theory, Game Theory, General Equilibrium, Growth, Learning and Evolution, Macroeconomics, Market and Mechanism Design, and Social Choice.
包括对契约理论、决策理论、博弈论、一般均衡、增长、学习与进化、宏观经济学、市场与机制设计、社会选择的理论贡献。
--

---
英文摘要:
  We introduce a new solution concept, called periodicity, for selecting optimal strategies in strategic form games. This periodicity solution concept yields new insight into non-trivial games. In mixed strategy strategic form games, periodic solutions yield values for the utility function of each player that are equal to the Nash equilibrium ones. In contrast to the Nash strategies, here the payoffs of each player are robust against what the opponent plays. Sometimes, periodicity strategies yield higher utilities, and sometimes the Nash strategies do, but often the utilities of these two strategies coincide. We formally define and study periodic strategies in two player perfect information strategic form games with pure strategies and we prove that every non-trivial finite game has at least one periodic strategy, with non-trivial meaning non-degenerate payoffs. In some classes of games where mixed strategies are used, we identify quantitative features. Particularly interesting are the implications for collective action games, since there the collective action strategy can be incorporated in a purely non-cooperative context. Moreover, we address the periodicity issue when the players have a continuum set of strategies available.
---
PDF链接:
https://arxiv.org/pdf/1307.2035
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Contribution Environments Quantitative Implications Applications periodicity 产生 效用 效用函数 使用

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
扫码
拉您进交流群
GMT+8, 2026-1-24 12:48