摘要翻译:
穿孔曲面乘开单纯形的Teichmueller空间的映射类群不变理想胞分解已在许多计算中使用。本文回答了关于这种分解的渐近性的一个问题,即在给定的分解单元中,哪些曲线可以是短的?屏幕是一种新的组合结构,为这一问题提供了答案。这里计算的核心涉及托勒密变换和λ长度上的三角形不等式。
---
英文标题:
《Stable curves and screens on fatgraphs》
---
作者:
R. C. Penner and Greg McShane
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Geometric Topology 几何拓扑
分类描述:Manifolds, orbifolds, polyhedra, cell complexes, foliations, geometric structures
流形,轨道,多面体,细胞复合体,叶状,几何结构
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
The mapping class group invariant ideal cell decomposition of the Teichmueller space of a punctured surface times an open simplex has been used in a number of computations. This paper answers a question about the asymptotics of this decomposition, namely, in a given cell of the decomposition, which curves can be short? Screens are a new combinatorial structure which provide an answer to this question. The heart of the calculation here involves Ptolemy transformations and the triangle inequalities on lambda lengths.
---
PDF链接:
https://arxiv.org/pdf/0707.1468


雷达卡



京公网安备 11010802022788号







