楼主: 大多数88
697 0

[经济学] 基于学生$T$-分布的混合自回归模型 [推广有奖]

  • 0关注
  • 3粉丝

会员

学术权威

67%

还不是VIP/贵宾

-

威望
10
论坛币
10 个
通用积分
70.7797
学术水平
0 点
热心指数
4 点
信用等级
0 点
经验
23294 点
帖子
3809
精华
0
在线时间
0 小时
注册时间
2022-2-24
最后登录
2022-4-15

楼主
大多数88 在职认证  发表于 2022-3-4 11:59:00 来自手机 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要翻译:
提出了一种新的基于学生$T$-分布的混合自回归模型。我们的模型的一个关键特征是组件模型的条件$T$-分布是基于具有多元$T$-分布作为其(低维)平稳分布的自回归。具有这种平稳分布的自回归不是立即存在的。我们的公式表明,各分量模型的条件均值是过去观测的线性函数,条件方差也是时变的。与以前的混合自回归模型相比,我们的模型可能在数据表现出相当强的条件异方差的应用中是有用的。我们的公式还具有理论上的优点,即平稳性和遍历性的条件总是得到满足,并且这些性质比非线性自回归模型中的一般性质更容易建立。基于标准普尔500高频数据的已实现核序列的实证结果表明,该模型具有较好的波动性预测效果。
---
英文标题:
《A mixture autoregressive model based on Student's $t$-distribution》
---
作者:
Mika Meitz, Daniel Preve, Pentti Saikkonen
---
最新提交年份:
2018
---
分类信息:

一级分类:Economics        经济学
二级分类:Econometrics        计量经济学
分类描述:Econometric Theory, Micro-Econometrics, Macro-Econometrics, Empirical Content of Economic Relations discovered via New Methods, Methodological Aspects of the Application of Statistical Inference to Economic Data.
计量经济学理论,微观计量经济学,宏观计量经济学,通过新方法发现的经济关系的实证内容,统计推论应用于经济数据的方法论方面。
--
一级分类:Mathematics        数学
二级分类:Statistics Theory        统计理论
分类描述:Applied, computational and theoretical statistics: e.g. statistical inference, regression, time series, multivariate analysis, data analysis, Markov chain Monte Carlo, design of experiments, case studies
应用统计、计算统计和理论统计:例如统计推断、回归、时间序列、多元分析、数据分析、马尔可夫链蒙特卡罗、实验设计、案例研究
--
一级分类:Statistics        统计学
二级分类:Methodology        方法论
分类描述:Design, Surveys, Model Selection, Multiple Testing, Multivariate Methods, Signal and Image Processing, Time Series, Smoothing, Spatial Statistics, Survival Analysis, Nonparametric and Semiparametric Methods
设计,调查,模型选择,多重检验,多元方法,信号和图像处理,时间序列,平滑,空间统计,生存分析,非参数和半参数方法
--
一级分类:Statistics        统计学
二级分类:Statistics Theory        统计理论
分类描述:stat.TH is an alias for math.ST. Asymptotics, Bayesian Inference, Decision Theory, Estimation, Foundations, Inference, Testing.
Stat.Th是Math.St的别名。渐近,贝叶斯推论,决策理论,估计,基础,推论,检验。
--

---
英文摘要:
  A new mixture autoregressive model based on Student's $t$-distribution is proposed. A key feature of our model is that the conditional $t$-distributions of the component models are based on autoregressions that have multivariate $t$-distributions as their (low-dimensional) stationary distributions. That autoregressions with such stationary distributions exist is not immediate. Our formulation implies that the conditional mean of each component model is a linear function of past observations and the conditional variance is also time varying. Compared to previous mixture autoregressive models our model may therefore be useful in applications where the data exhibits rather strong conditional heteroskedasticity. Our formulation also has the theoretical advantage that conditions for stationarity and ergodicity are always met and these properties are much more straightforward to establish than is common in nonlinear autoregressive models. An empirical example employing a realized kernel series based on S&P 500 high-frequency data shows that the proposed model performs well in volatility forecasting.
---
PDF链接:
https://arxiv.org/pdf/1805.04010
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:自回归模型 回归模型 自回归 distribution econometrics 数据 应用 结果表明 组件 基于

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-24 06:21