楼主: 何人来此
250 0

[数学] 极小VII类曲面上PU(2)-瞬子的模空间 B_2=1 [推广有奖]

  • 0关注
  • 4粉丝

会员

学术权威

78%

还不是VIP/贵宾

-

威望
10
论坛币
10 个
通用积分
64.8012
学术水平
1 点
热心指数
6 点
信用等级
0 点
经验
24593 点
帖子
4128
精华
0
在线时间
0 小时
注册时间
2022-2-24
最后登录
2022-4-15

楼主
何人来此 在职认证  发表于 2022-3-4 12:13:30 来自手机 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要翻译:
对于所有最小VII类曲面$S$和所有可能的Gauduchon度量$G$,我们显式地描述了在$C_1(E)=C_1(K)$和$C_2(E)=0$的秩2向量丛$E$上具有$\det E\cong K$的多稳定全纯结构$E$的模空间$M^{pst}_g(S,E)$。这些曲面$S$是非椭圆和非Kaehler复曲面,最近被完全分类。当$S$为半曲面或抛物型井上曲面时,$M^{pst}_g(S,E)$总是紧致的一维复圆盘。当$S$是一个Enoki曲面时,我们得到了一个具有有限个横向自交点的复圆盘,当$G$在Gauduchon度量空间中变化时,该自交点的数目变得任意大。$m^{pst}_g(S,E)$可以用PU(2)-瞬子的模空间来识别。上述类型的单丛的模空间导致了有趣的非Hausdorff奇异一维复空间的例子。
---
英文标题:
《Moduli Spaces of PU(2)-Instantons on Minimal Class VII Surfaces with
  b_2=1》
---
作者:
Konrad Sch\"obel
---
最新提交年份:
2007
---
分类信息:

一级分类:Mathematics        数学
二级分类:Differential Geometry        微分几何
分类描述:Complex, contact, Riemannian, pseudo-Riemannian and Finsler geometry, relativity, gauge theory, global analysis
复形,接触,黎曼,伪黎曼和Finsler几何,相对论,规范理论,整体分析
--
一级分类:Mathematics        数学
二级分类:Algebraic Geometry        代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics        数学
二级分类:Complex Variables        复变数
分类描述:Holomorphic functions, automorphic group actions and forms, pseudoconvexity, complex geometry, analytic spaces, analytic sheaves
全纯函数,自守群作用与形式,伪凸性,复几何,解析空间,解析束
--

---
英文摘要:
  We describe explicitly the moduli spaces $M^{pst}_g(S,E)$ of polystable holomorphic structures $E$ with $\det E\cong K$ on a rank 2 vector bundle $E$ with $c_1(E)=c_1(K)$ and $c_2(E)=0$ for all minimal class VII surfaces $S$ with $b_2(S)=1$ and with respect to all possible Gauduchon metrics $g$. These surfaces $S$ are non-elliptic and non-Kaehler complex surfaces and have recently been completely classified. When $S$ is a half or parabolic Inoue surface, $M^{pst}_g(S,E)$ is always a compact one-dimensional complex disc. When $S$ is an Enoki surface, one obtains a complex disc with finitely many transverse self-intersections whose number becomes arbitrarily large when $g$ varies in the space of Gauduchon metrics. $M^{pst}_g(S,E)$ can be identified with a moduli space of PU(2)-instantons. The moduli spaces of simple bundles of the above type leads to interesting examples of non-Hausdorff singular one-dimensional complex spaces.
---
PDF链接:
https://arxiv.org/pdf/0705.3349
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:VII Differential mathematics Dimensional Automorphic cong 曲面 任意 moduli Kaehler

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2026-1-6 13:26