摘要翻译:
给出了一类伪反射群(包括$b_n$型Weyl群)的多项式不变量的第一和第二基本定理,并假定群的阶在基域上是可逆的。结果的特例是多对称多项式代数的有限表示。证明了不变交换格式的可约性是一个副产品。讨论了任意基环上多对称多项式的代数。
---
英文标题:
《Vector invariants of a class of pseudo-reflection groups and
multisymmetric syzygies》
---
作者:
M. Domokos
---
最新提交年份:
2015
---
分类信息:
一级分类:Mathematics 数学
二级分类:Representation Theory 表象理论
分类描述:Linear representations of algebras and groups, Lie theory, associative algebras, multilinear algebra
代数和群的线性表示,李理论,结合代数,多重线性代数
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
First and second fundamental theorems are given for polynomial invariants of a class of pseudo-reflection groups (including the Weyl groups of type $B_n$), under the assumption that the order of the group is invertible in the base field. Special case of the result is a finite presentation of the algebra of multisymmetric polynomials. Reducedness of the invariant commuting scheme is proved as a by-product. The algebra of multisymmetric polynomials over an arbitrary base ring is revisited.
---
PDF链接:
https://arxiv.org/pdf/0706.2154


雷达卡



京公网安备 11010802022788号







