楼主: kedemingshi
268 0

[数学] 与三次相关的秩6向量丛的一个显着模空间 曲面 [推广有奖]

  • 0关注
  • 4粉丝

会员

学术权威

78%

还不是VIP/贵宾

-

威望
10
论坛币
15 个
通用积分
89.2735
学术水平
0 点
热心指数
8 点
信用等级
0 点
经验
24665 点
帖子
4127
精华
0
在线时间
0 小时
注册时间
2022-2-24
最后登录
2022-4-15

楼主
kedemingshi 在职认证  发表于 2022-3-4 16:31:00 来自手机 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要翻译:
研究了具有Chern多项式1+3T+6T2+4T3$的单秩6向量丛在$PP3$上的模空间$FM^s(6;3,6,4)$及其性质,特别是证明了有关其稳定性的部分结果。我们首先回顾这些束是如何与在$\pp^3$中构造六次节点曲面相关的,它具有一个由56个节点组成的偶数集合(参见\cite{CaTo})。我们证明了与具有极小上同调的单丛对应的开集是维数19不可约的,并且是G.I.T的开集$\Fa^0$的双亚纯的。在$SL(W)\乘SL(U)$的自然作用下,$(3,3,4)$型三张量的射影空间$\fb:=\\b\in\pp(U^\ve\o乘W\o乘v^\vee)\}$的商空间。我们给出了这些束的几种构造,并将它们与3空间$\pp^3$中的三次曲面和对偶空间$(\pp^3)^{\vee}$中的三次曲面联系起来。由Igor Dolgachev提出的这些构造之一推广到其他类型的张量。此外,我们还将Cite{CaTo}中介绍的$(3,3,4)$-张量的{em交叉积对合}与$pp^3$中与三次曲面相关的Schur二次曲面联系起来,并进一步研究了这种对合的性质。
---
英文标题:
《A remarkable moduli space of rank 6 vector bundles related to cubic
  surfaces》
---
作者:
Fabrizio Catanese (Universitaet Bayreuth), Fabio Tonoli (Universita'
  di Trento)
---
最新提交年份:
2007
---
分类信息:

一级分类:Mathematics        数学
二级分类:Algebraic Geometry        代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--

---
英文摘要:
  We study the moduli space $\fM^s(6;3,6,4)$ of simple rank 6 vector bundles $\E$ on $\PP^3$ with Chern polynomial $1+3t+6t^2+4t^3$ and properties of these bundles, especially we prove some partial results concerning their stability. We first recall how these bundles are related to the construction of sextic nodal surfaces in $\PP^3$ having an even set of 56 nodes (cf. \cite{CaTo}). We prove that there is an open set, corresponding to the simple bundles with minimal cohomology, which is irreducible of dimension 19 and bimeromorphic to an open set $\fA^0$ of the G.I.T. quotient space of the projective space $\fB:=\{B\in \PP(U^\vee\otimes W\otimes V^\vee)\}$ of triple tensors of type $(3,3,4)$ by the natural action of $SL(W)\times SL(U)$. We give several constructions for these bundles, which relate them to cubic surfaces in 3-space $\PP^3$ and to cubic surfaces in the dual space $(\PP^3)^{\vee}$. One of these constructions, suggested by Igor Dolgachev, generalizes to other types of tensors. Moreover, we relate the socalled {\em cross-product involution} for $(3,3,4)$-tensors, introduced in \cite{CaTo}, with the Schur quadric associated to a cubic surface in $\PP^3$ and study further properties of this involution.
---
PDF链接:
https://arxiv.org/pdf/0705.2184
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Construction mathematics Properties Polynomial Mathematic 曲面 部分 these moduli set

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-31 19:30