楼主: Caroline.just
2229 2

[CFA] 求解:the premium for the policy is set at 100 over the expected total claim amt [推广有奖]

  • 1关注
  • 0粉丝

博士生

29%

还不是VIP/贵宾

-

威望
0
论坛币
0 个
通用积分
1.0000
学术水平
5 点
热心指数
8 点
信用等级
7 点
经验
105 点
帖子
63
精华
0
在线时间
465 小时
注册时间
2012-1-26
最后登录
2019-3-27

楼主
Caroline.just 在职认证  发表于 2013-3-9 20:34:06 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
The total claim amount for a health insurance policy follows a distribution with density
function f(x) = 11000e−x/1000, for x > 0.The premium for the policy is set at 100 over the expected total claim amount. If 100
policies are sold, what is the approximate probability that the insurance company will
have claims exceeding the premiums collected?

为什么premium for each policy is 1100, 谢谢

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Expected premium expect Policy Total set expected policy

沙发
IntheRed 发表于 2013-3-11 10:09:05
it's obvious that there's a typo in the expression of the density function.
f(x) = (1/1000) e^(-x/1000) should be the correct density,
otherwise, it is NOT a probability density.
with that, E[X]=1000, and "The premium for the policy is set at 100 over the expected total claim amount"
therefore, premium = 1000+100=1100.

藤椅
Caroline.just 在职认证  发表于 2013-3-22 23:15:34
IntheRed 发表于 2013-3-11 10:09
it's obvious that there's a typo in the expression of the density function.
f(x) = (1/1000) e^(-x/1 ...
I‘ve got it. Thx!

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2026-1-2 17:58