摘要翻译:
提出了弛豫铁电体中极性纳米区冻结的物理机制。假设PNRs标度团簇的重定向活化能与团簇的平均体积有关,当团簇体积达到渗流极限时,特征弛豫时间$\tau$发生发散。应用连续介质渗流的平均场理论,导出了温度依赖的Vogel-Fulcher方程。
---
英文标题:
《Vogel-Fulcher freezing in relaxor ferroelectrics》
---
作者:
R. Pirc and R. Blinc
---
最新提交年份:
2007
---
分类信息:
一级分类:Physics 物理学
二级分类:Disordered Systems and Neural Networks 无序系统与神经网络
分类描述:Glasses and spin glasses; properties of random, aperiodic and quasiperiodic systems; transport in disordered media; localization; phenomena mediated by defects and disorder; neural networks
眼镜和旋转眼镜;随机、非周期和准周期系统的性质;无序介质中的传输;本地化;由缺陷和无序介导的现象;神经网络
--
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
---
英文摘要:
A physical mechanism for the freezing of polar nanoregions (PNRs) in relaxor ferroelectrics is presented. Assuming that the activation energy for the reorientation of a cluster of PNRs scales with the mean volume of the cluster, the characteristic relaxation time $\tau$ is found to diverge as the cluster volume reaches the percolation limit. Applying the mean field theory of continuum percolation, the familiar Vogel-Fulcher equation for the temperature dependence of $\tau$ is derived.
---
PDF链接:
https://arxiv.org/pdf/705.3732


雷达卡



京公网安备 11010802022788号







