楼主: kedemingshi
356 0

[数学] 可积拉格朗日与模形式 [推广有奖]

  • 0关注
  • 4粉丝

会员

学术权威

78%

还不是VIP/贵宾

-

威望
10
论坛币
15 个
通用积分
89.2735
学术水平
0 点
热心指数
8 点
信用等级
0 点
经验
24665 点
帖子
4127
精华
0
在线时间
0 小时
注册时间
2022-2-24
最后登录
2022-4-15

楼主
kedemingshi 在职认证  发表于 2022-3-4 20:07:00 来自手机 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要翻译:
本文研究了形式为$$\int f(u_x,u_y,u_t)dx dy dt$$的非退化拉格朗日方程,使得相应的Euler-Lagrange方程$(f_{u_x})_x+(f_{u_y})_y+(f_{u_t})_t=0$是可积的。证明了在20参数的Lie点对称群下,构成Lagrangian密度f的对合超定四阶偏微分方程组的可积条件是不变的,该群对可积Lagrangian模空间的作用是开轨道的。与此轨道相对应的Master-Lagrangian密度是定义在复双曲球上的三个变量中的模形式。我们证明了对称群的知识是如何使可积条件线性化的。
---
英文标题:
《Integrable Lagrangians and modular forms》
---
作者:
E. V. Ferapontov and A. V. Odesskii
---
最新提交年份:
2007
---
分类信息:

一级分类:Physics        物理学
二级分类:Exactly Solvable and Integrable Systems        精确可解可积系统
分类描述:Exactly solvable systems, integrable PDEs, integrable ODEs, Painleve analysis, integrable discrete maps, solvable lattice models, integrable quantum systems
精确可解系统,可积偏微分方程,可积偏微分方程,Painleve分析,可积离散映射,可解格模型,可积量子系统
--
一级分类:Physics        物理学
二级分类:High Energy Physics - Theory        高能物理-理论
分类描述:Formal aspects of quantum field theory. String theory, supersymmetry and supergravity.
量子场论的形式方面。弦理论,超对称性和超引力。
--
一级分类:Mathematics        数学
二级分类:Algebraic Geometry        代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics        数学
二级分类:Differential Geometry        微分几何
分类描述:Complex, contact, Riemannian, pseudo-Riemannian and Finsler geometry, relativity, gauge theory, global analysis
复形,接触,黎曼,伪黎曼和Finsler几何,相对论,规范理论,整体分析
--
一级分类:Mathematics        数学
二级分类:Number Theory        数论
分类描述:Prime numbers, diophantine equations, analytic number theory, algebraic number theory, arithmetic geometry, Galois theory
素数,丢番图方程,解析数论,代数数论,算术几何,伽罗瓦理论
--

---
英文摘要:
  We investigate non-degenerate Lagrangians of the form   $$   \int f(u_x, u_y, u_t) dx dy dt   $$ such that the corresponding Euler-Lagrange equations   $   (f_{u_x})_x+ (f_{u_y})_y+ (f_{u_t})_t=0   $ are integrable by the method of hydrodynamic reductions. We demonstrate that the integrability conditions, which constitute an involutive over-determined system of fourth order PDEs for the Lagrangian density f, are invariant under a 20-parameter group of Lie-point symmetries whose action on the moduli space of integrable Lagrangians has an open orbit. The density of the `master-Lagrangian' corresponding to this orbit is shown to be a modular form in three variables defined on a complex hyperbolic ball. We demonstrate how the knowledge of the symmetry group allows one to linearise the integrability conditions.
---
PDF链接:
https://arxiv.org/pdf/0707.3433
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:拉格朗日 拉格朗 Differential mathematics Mathematic 证明 form Lagrangian modular demonstrate

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2026-1-7 19:44