摘要翻译:
研究了光滑曲面$Z$内收缩直线$\ell$而得到的曲面奇点附近束的局部全纯欧拉特征$\chi(x,\Mathcal{F})$。我们用一定的数值不变量证明了槽轮的不存在性。在具有一定电荷的$Z$上不存在瞬子,我们得出$\ell^2$对瞬子衰变有阻碍作用的结论。计算$\chi$的麦考利2算法可在http://www.maths.ed.ac.uk/~s0571100/instanton/获得
---
英文标题:
《Local holomorphic Euler characteristic and instanton decay》
---
作者:
Elizabeth Gasparim, Thomas K\"oppe, Pushan Majumdar
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Physics 物理学
二级分类:High Energy Physics - Theory 高能物理-理论
分类描述:Formal aspects of quantum field theory. String theory, supersymmetry and supergravity.
量子场论的形式方面。弦理论,超对称性和超引力。
--
---
英文摘要:
We study the local holomorphic Euler characteristic $\chi(x,\mathcal{F})$ of sheaves near a surface singularity obtained from contracting a line $\ell$ inside a smooth surface $Z$. We prove non-existence of sheaves with certain prescribed numerical invariants. Non-existence of instantons on $Z$ with certain charges follows, and we conclude that $\ell^2$ poses an obstruction to instanton decay. A Macaulay 2 algorithm to compute $\chi$ is made available at http://www.maths.ed.ac.uk/~s0571100/Instanton/
---
PDF链接:
https://arxiv.org/pdf/0709.2577


雷达卡



京公网安备 11010802022788号







