摘要翻译:
研究了Lipman Bers引入的增广Teichmuller空间ATS的复解析性质。这些空间是通过在经典的Teichmuller空间TS上加上节点黎曼曲面对应的点而得到的。与TS不同,空间ATS不是一个复杂的流形(它甚至不是局部紧的)。然而,我们证明了Teichmuller模群的任一有限指数子群的ATS商具有复轨道的正则结构。利用这种结构,我们构造了从ATS到稳定Riemann曲面的容许覆盖叠的自然映射。这一结果对于理解弦orbifold上同调中的杯积具有重要意义。我们还从一般的orbifolds理论中建立了一些新的技术结果,这些结果可能是独立感兴趣的。
---
英文标题:
《Augmented Teichmuller Spaces and Orbifolds》
---
作者:
Vladimir Hinich and Arkady Vaintrob
---
最新提交年份:
2011
---
分类信息:
一级分类:Mathematics 数学
二级分类:Complex Variables 复变数
分类描述:Holomorphic functions, automorphic group actions and forms, pseudoconvexity, complex geometry, analytic spaces, analytic sheaves
全纯函数,自守群作用与形式,伪凸性,复几何,解析空间,解析束
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
We study complex-analytic properties of the augmented Teichmuller spaces ATS introduced by Lipman Bers. These spaces are obtained by adding to the classical Teichmuller space TS the points corresponding to nodal Riemann surfaces. Unlike TS, the space ATS is not a complex manifold (it is not even locally compact). We prove however that the quotient of ATS by any finite index subgroup of the Teichmuller modular group has a canonical structure of a complex orbifold. Using this structure we construct natural maps from ATS to stacks of admissible coverings of stable Riemann surfaces. This result is important for understanding the cup-product in stringy orbifold cohomology. We also establish some new technical results from the general theory of orbifolds which may be of independent interest.
---
PDF链接:
https://arxiv.org/pdf/0705.2859


雷达卡



京公网安备 11010802022788号







