摘要翻译:
本文利用群O(2,n)给出了椭圆Weyl群不变理论的一个新公式。作为椭圆Weyl群商,我们定义了一个合适的$\c^*$-丛。我们证明了它具有本文定义的共形Frobenius结构。然后用我们在ARXIV:Math/0611553中构造的Frobenius流形来识别它的好截面。
---
英文标题:
《An O(2,n) formulation of invariant theory for elliptic Weyl group》
---
作者:
Ikuo Satake
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Representation Theory 表象理论
分类描述:Linear representations of algebras and groups, Lie theory, associative algebras, multilinear algebra
代数和群的线性表示,李理论,结合代数,多重线性代数
--
---
英文摘要:
In this paper, we give a new formulation of invariant theory for elliptic Weyl group using the group O(2,n). As an elliptic Weyl group quotient, we define a suitable $\C^*$-bundle. We show that it has a conformal Frobenius structure which we define in this paper. Then its good section could be identified with a Frobenius manifold which we constructed in arXiv:math/0611553.
---
PDF链接:
https://arxiv.org/pdf/0709.1262


雷达卡



京公网安备 11010802022788号







