摘要翻译:
基于正交频分复用(OFDM)或单载波频分多址(SC-FDMA)的宽带海量多用户(MU)、多输入多输出(MIMO)无线系统中的许多线性和非线性数据检测和预编码算法都需要计算每个有效子载波的Gram矩阵。然而,为每个有源子载波计算Gram矩阵导致过高的计算复杂度。在本文中,我们提出了新的近似算法,通过同时利用子载波间的相关性和信道硬化来显著降低革兰矩阵计算的复杂度。我们解析地证明了在大规模MU-MIMO系统中,少量的Gram矩阵计算和近似插值方案的结合足以在较低的计算复杂度下获得接近最优的误码率性能。我们还证明了与通常需要高计算复杂度的精确的Gram-matrix插值算法相比,所提出的方法在抗信道估计误差方面表现出了改进的鲁棒性。
---
英文标题:
《Approximate Gram-Matrix Interpolation for Wideband Massive MU-MIMO
Systems》
---
作者:
Charles Jeon, Zequn Li, and Christoph Studer
---
最新提交年份:
2018
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Information Theory 信息论
分类描述:Covers theoretical and experimental aspects of information theory and coding. Includes material in ACM Subject Class E.4 and intersects with H.1.1.
涵盖信息论和编码的理论和实验方面。包括ACM学科类E.4中的材料,并与H.1.1有交集。
--
一级分类:Electrical Engineering and Systems Science 电气工程与系统科学
二级分类:Signal Processing 信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--
一级分类:Mathematics 数学
二级分类:Information Theory 信息论
分类描述:math.IT is an alias for cs.IT. Covers theoretical and experimental aspects of information theory and coding.
它是cs.it的别名。涵盖信息论和编码的理论和实验方面。
--
---
英文摘要:
Numerous linear and non-linear data-detection and precoding algorithms for wideband massive multi-user (MU) multiple-input multiple-output (MIMO) wireless systems that rely on orthogonal frequency-division multiplexing (OFDM) or single-carrier frequency-division multiple access (SC-FDMA) require the computation of the Gram matrix for each active subcarrier. Computing the Gram matrix for each active subcarrier, however, results in excessively high computational complexity. In this paper, we propose novel, approximate algorithms that significantly reduce the complexity of Gram-matrix computation by simultaneously exploiting correlation across subcarriers and channel hardening. We show analytically that a small fraction of Gram-matrix computations in combination with approximate interpolation schemes are sufficient to achieve near-optimal error-rate performance at low computational complexity in massive MU-MIMO systems. We also demonstrate that the proposed methods exhibit improved robustness against channel-estimation errors compared to exact Gram-matrix interpolation algorithms that typically require high computational complexity.
---
PDF链接:
https://arxiv.org/pdf/1610.00227