摘要翻译:
提出了一种构造Metropolis-Hastings算法在Markov链Monte Carlo(MCMC)模拟GARCH模型中的建议密度的方法。建议密度是利用MCMC方法自身采样的数据自适应地构造的。结果表明,用我们的自适应建议密度生成的数据之间的自相关性大大降低。结果表明,自适应构造方法对于GARCH模型的MCMC模拟是非常有效的。
---
英文标题:
《An Adaptive Markov Chain Monte Carlo Method for GARCH Model》
---
作者:
Tetsuya Takaishi
---
最新提交年份:
2009
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Computational Finance 计算金融学
分类描述:Computational methods, including Monte Carlo, PDE, lattice and other numerical methods with applications to financial modeling
计算方法,包括蒙特卡罗,偏微分方程,格子和其他数值方法,并应用于金融建模
--
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
一级分类:Quantitative Finance 数量金融学
二级分类:Statistical Finance 统计金融
分类描述:Statistical, econometric and econophysics analyses with applications to financial markets and economic data
统计、计量经济学和经济物理学分析及其在金融市场和经济数据中的应用
--
---
英文摘要:
We propose a method to construct a proposal density for the Metropolis-Hastings algorithm in Markov Chain Monte Carlo (MCMC) simulations of the GARCH model. The proposal density is constructed adaptively by using the data sampled by the MCMC metho d itself. It turns out that autocorrelations between the data generated with our adaptive proposal density are greatly reduced. Thus it is concluded that the adaptive construction method is very efficient and works well for the MCMC simulations of the GARCH model.
---
PDF链接:
https://arxiv.org/pdf/0901.0992


雷达卡



京公网安备 11010802022788号







