摘要翻译:
我们研究了一组N个项目的概率群检验,每个项目的概率p是有缺陷的。我们着重讨论了小缺陷概率p<1和大变量数n>>1的双重极限,取p->0在$n\to\infty$之后,或取$p=1/n^{\beta}$在(0,1/2)$中,$\beta}$。在这两种情况下,通过两个阶段的过程$\bar T(N,p)$确定缺陷所需的最佳测试次数被称为$np\log p$。本文确定了$\bart(N,p)/(np\logp)$的尖锐渐近值,并构造了一类两阶段算法,通过该算法得到了该最优值。这是通过为检测的第一阶段选择一个合适的二部正则图(测试和可变节点)来完成的。此外,我们还证明了在任意二部图上,当所有变量都具有相同的度,而检验具有泊松分布度时,这个最优值也是平均的。最后,我们改进了在[1/2,1)$中$p=1/n^{\beta}$与$\beta\情形下已有的最优测试数的上下界。
---
英文标题:
《Group Testing with Random Pools: optimal two-stage algorithms》
---
作者:
Marc Mezard, Cristina Toninelli
---
最新提交年份:
2007
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Data Structures and Algorithms 数据结构与算法
分类描述:Covers data structures and analysis of algorithms. Roughly includes material in ACM Subject Classes E.1, E.2, F.2.1, and F.2.2.
涵盖数据结构和算法分析。大致包括ACM学科类E.1、E.2、F.2.1和F.2.2中的材料。
--
一级分类:Physics 物理学
二级分类:Disordered Systems and Neural Networks 无序系统与神经网络
分类描述:Glasses and spin glasses; properties of random, aperiodic and quasiperiodic systems; transport in disordered media; localization; phenomena mediated by defects and disorder; neural networks
眼镜和旋转眼镜;随机、非周期和准周期系统的性质;无序介质中的传输;本地化;由缺陷和无序介导的现象;神经网络
--
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
一级分类:Computer Science 计算机科学
二级分类:Information Theory 信息论
分类描述:Covers theoretical and experimental aspects of information theory and coding. Includes material in ACM Subject Class E.4 and intersects with H.1.1.
涵盖信息论和编码的理论和实验方面。包括ACM学科类E.4中的材料,并与H.1.1有交集。
--
一级分类:Mathematics 数学
二级分类:Information Theory 信息论
分类描述:math.IT is an alias for cs.IT. Covers theoretical and experimental aspects of information theory and coding.
它是cs.it的别名。涵盖信息论和编码的理论和实验方面。
--
---
英文摘要:
We study Probabilistic Group Testing of a set of N items each of which is defective with probability p. We focus on the double limit of small defect probability, p<<1, and large number of variables, N>>1, taking either p->0 after $N\to\infty$ or $p=1/N^{\beta}$ with $\beta\in(0,1/2)$. In both settings the optimal number of tests which are required to identify with certainty the defectives via a two-stage procedure, $\bar T(N,p)$, is known to scale as $Np|\log p|$. Here we determine the sharp asymptotic value of $\bar T(N,p)/(Np|\log p|)$ and construct a class of two-stage algorithms over which this optimal value is attained. This is done by choosing a proper bipartite regular graph (of tests and variable nodes) for the first stage of the detection. Furthermore we prove that this optimal value is also attained on average over a random bipartite graph where all variables have the same degree, while the tests have Poisson-distributed degrees. Finally, we improve the existing upper and lower bound for the optimal number of tests in the case $p=1/N^{\beta}$ with $\beta\in[1/2,1)$.
---
PDF链接:
https://arxiv.org/pdf/706.3104


雷达卡



京公网安备 11010802022788号







