楼主: 可人4
212 0

[数学] 辛$C_infty$-代数 [推广有奖]

  • 0关注
  • 2粉丝

会员

学术权威

76%

还不是VIP/贵宾

-

威望
10
论坛币
15 个
通用积分
49.0443
学术水平
0 点
热心指数
1 点
信用等级
0 点
经验
24465 点
帖子
4070
精华
0
在线时间
0 小时
注册时间
2022-2-24
最后登录
2022-4-15

楼主
可人4 在职认证  发表于 2022-3-6 21:30:25 来自手机 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要翻译:
本文证明了上同调内积不变的强同伦交换(或$C_\infty$-)代数可唯一推广为辛$C_\infty$-代数(由Kontsevich引入的交换Frobenius代数的$\infty$-推广)。这一结果依赖于$\ci$-代数的循环Hochschild上同调的代数Hodge分解,不能推广到其他运算域上的代数。
---
英文标题:
《Symplectic $C_\infty$-algebras》
---
作者:
Alastair Hamilton and Andrey Lazarev
---
最新提交年份:
2007
---
分类信息:

一级分类:Mathematics        数学
二级分类:Quantum Algebra        量子代数
分类描述:Quantum groups, skein theories, operadic and diagrammatic algebra, quantum field theory
量子群,skein理论,运算代数和图解代数,量子场论
--
一级分类:Mathematics        数学
二级分类:Algebraic Geometry        代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics        数学
二级分类:K-Theory and Homology        K-理论与同调
分类描述:Algebraic and topological K-theory, relations with topology, commutative algebra, and operator algebras
代数和拓扑K-理论,与拓扑的关系,交换代数和算子代数
--

---
英文摘要:
  In this paper we show that a strongly homotopy commutative (or $C_\infty$-) algebra with an invariant inner product on its cohomology can be uniquely extended to a symplectic $C_\infty$-algebra (an $\infty$-generalisation of a commutative Frobenius algebra introduced by Kontsevich). This result relies on the algebraic Hodge decomposition of the cyclic Hochschild cohomology of a $\ci$-algebra and does not generalize to algebras over other operads.
---
PDF链接:
https://arxiv.org/pdf/0707.3951
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:infty mathematics composition Topological Mathematic Hodge 分解 证明 不能

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2026-1-7 07:00