摘要翻译:
讨论了信息与copula理论之间的联系,证明了copula可以将多元分布的信息量分解为边际分量和依赖分量,依赖分量由互信息量化。我们将信息过剩定义为偏离最大熵分布的度量。本文还讨论了边际不变相关测度的思想,并用它证明了在非高斯边际情况下,经验线性相关低估了实际相关的幅度。互信息为Copula的渐近经验对数似然提供了一个上界。本文给出了T-copulas信息过剩的解析表达式,允许在该族中进行简单的模型辨识。我们用一个金融数据集来说明这个框架。
---
英文标题:
《An information theoretic approach to statistical dependence: copula
information》
---
作者:
Rafael S. Calsaverini, Renato Vicente
---
最新提交年份:
2009
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Statistical Finance 统计金融
分类描述:Statistical, econometric and econophysics analyses with applications to financial markets and economic data
统计、计量经济学和经济物理学分析及其在金融市场和经济数据中的应用
--
一级分类:Computer Science 计算机科学
二级分类:Information Theory 信息论
分类描述:Covers theoretical and experimental aspects of information theory and coding. Includes material in ACM Subject Class E.4 and intersects with H.1.1.
涵盖信息论和编码的理论和实验方面。包括ACM学科类E.4中的材料,并与H.1.1有交集。
--
一级分类:Mathematics 数学
二级分类:Information Theory 信息论
分类描述:math.IT is an alias for cs.IT. Covers theoretical and experimental aspects of information theory and coding.
它是cs.it的别名。涵盖信息论和编码的理论和实验方面。
--
一级分类:Physics 物理学
二级分类:Data Analysis, Statistics and Probability 数据分析、统计与概率
分类描述:Methods, software and hardware for physics data analysis: data processing and storage; measurement methodology; statistical and mathematical aspects such as parametrization and uncertainties.
物理数据分析的方法、软硬件:数据处理与存储;测量方法;统计和数学方面,如参数化和不确定性。
--
一级分类:Statistics 统计学
二级分类:Applications 应用程序
分类描述:Biology, Education, Epidemiology, Engineering, Environmental Sciences, Medical, Physical Sciences, Quality Control, Social Sciences
生物学,教育学,流行病学,工程学,环境科学,医学,物理科学,质量控制,社会科学
--
---
英文摘要:
We discuss the connection between information and copula theories by showing that a copula can be employed to decompose the information content of a multivariate distribution into marginal and dependence components, with the latter quantified by the mutual information. We define the information excess as a measure of deviation from a maximum entropy distribution. The idea of marginal invariant dependence measures is also discussed and used to show that empirical linear correlation underestimates the amplitude of the actual correlation in the case of non-Gaussian marginals. The mutual information is shown to provide an upper bound for the asymptotic empirical log-likelihood of a copula. An analytical expression for the information excess of T-copulas is provided, allowing for simple model identification within this family. We illustrate the framework in a financial data set.
---
PDF链接:
https://arxiv.org/pdf/0911.4207


雷达卡



京公网安备 11010802022788号







