摘要翻译:
不变网格(MIG)法是一种基于慢不变流形(SIM)概念的化学动力学模型简化的迭代方法[1-4]。在这种方法中,初始网格起着重要的作用,它一旦细化,就给出了不变流形的描述:不变网格。利用谱拟平衡流形(SQEM)[1-2]给出了得到SIM一阶近似的简便方法。本文提出了一种构造任意维拟平衡流形离散模拟的灵活的数值方法。该对象称为准平衡网格(QEG),过程为准平衡网格算法。本文还提出了QEM概念的扩展。QEG是一个数值工具,它可以用来在某些线性约束下寻找凸函数极小点轨迹的基于网格的逼近。通过构建氢氧化反应模型的一维和二维网格,验证了该方法的有效性。
---
英文标题:
《Quasi Equilibrium Grid Algorithm: geometric construction for model
reduction》
---
作者:
E. Chiavazzo, I.V. Karlin
---
最新提交年份:
2007
---
分类信息:
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
---
英文摘要:
The Method of Invariant Grid (MIG) is an iterative procedure for model reduction in chemical kinetics which is based on the notion of Slow Invariant Manifold (SIM) [1-4]. Important role, in that method, is played by the initial grid which, once refined, gives a description of the invariant manifold: the invariant grid. A convenient way to get a first approximation of the SIM is given by the Spectral Quasi Equilibrium Manifold (SQEM) [1-2]. In the present paper, a flexible numerical method to construct the discrete analog of a Quasi Equilibrium Manifold, in any dimension, is presented. That object is named Quasi Equilibrium Grid (QEG), while the procedure Quasi Equilibrium Grid Algorithm. Extensions of the QEM notion are also suggested. The QEG is a numerical tool which can be used to find a grid-based approximation for the locus of minima of a convex function under some linear constraints. The method is validated by construction of one and two-dimensional grids for model hydrogen oxidation reaction.
---
PDF链接:
https://arxiv.org/pdf/704.2317


雷达卡



京公网安备 11010802022788号







