摘要翻译:
利用状态空间模型建立了多元随机波动的贝叶斯方法。对日志返回采用自回归模型。我们推广了倒Wishart分布,以允许观测和状态新息向量之间的不同相关结构,并推广了Wishart分布与多元奇异beta分布之间的卷积。在广义倒Wishart分布和多元奇异贝塔分布的基础上,提出了波动率演化的乘法模型,并采用了灵活的序列波动率更新。所提出的波动率预测算法速度快,计算量小,可用于在线预测。最后以8种货币的汇率数据为例说明了该方法的有效性。实证结果表明,即使在高维数据的情况下,时变相关性也可以被有效地估计。
---
英文标题:
《Multivariate stochastic volatility using state space models》
---
作者:
K. Triantafyllopoulos
---
最新提交年份:
2008
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Statistical Finance 统计金融
分类描述:Statistical, econometric and econophysics analyses with applications to financial markets and economic data
统计、计量经济学和经济物理学分析及其在金融市场和经济数据中的应用
--
一级分类:Statistics 统计学
二级分类:Applications 应用程序
分类描述:Biology, Education, Epidemiology, Engineering, Environmental Sciences, Medical, Physical Sciences, Quality Control, Social Sciences
生物学,教育学,流行病学,工程学,环境科学,医学,物理科学,质量控制,社会科学
--
一级分类:Statistics 统计学
二级分类:Methodology 方法论
分类描述:Design, Surveys, Model Selection, Multiple Testing, Multivariate Methods, Signal and Image Processing, Time Series, Smoothing, Spatial Statistics, Survival Analysis, Nonparametric and Semiparametric Methods
设计,调查,模型选择,多重检验,多元方法,信号和图像处理,时间序列,平滑,空间统计,生存分析,非参数和半参数方法
--
---
英文摘要:
A Bayesian procedure is developed for multivariate stochastic volatility, using state space models. An autoregressive model for the log-returns is employed. We generalize the inverted Wishart distribution to allow for different correlation structure between the observation and state innovation vectors and we extend the convolution between the Wishart and the multivariate singular beta distribution. A multiplicative model based on the generalized inverted Wishart and multivariate singular beta distributions is proposed for the evolution of the volatility and a flexible sequential volatility updating is employed. The proposed algorithm for the volatility is fast and computationally cheap and it can be used for on-line forecasting. The methods are illustrated with an example consisting of foreign exchange rates data of 8 currencies. The empirical results suggest that time-varying correlations can be estimated efficiently, even in situations of high dimensional data.
---
PDF链接:
https://arxiv.org/pdf/0802.0223


雷达卡



京公网安备 11010802022788号







