摘要翻译:
本文是一系列三篇文章中的第一篇,其目的是为自由metabelian李代数奠定代数几何的基础。本文引入了metabelian Lie$u$-代数的概念,建立了metabelian Lie$u$-代数与特殊矩阵李代数之间的联系。定义了元李代数$a$的$\delta$-局部化和拟合根$a$的直模扩张,并证明了这些代数位于$a$的泛闭包中。
---
英文标题:
《Algebraic Geometry over Free Metabelian Lie Algebra I: U-Algebras and
Universal Classes》
---
作者:
E. Daniyarova, I. Kazachkov, V. Remeslennikov
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Logic 逻辑
分类描述:Logic, set theory, point-set topology, formal mathematics
逻辑,集合论,点集拓扑,形式数学
--
---
英文摘要:
This paper is the first in a series of three, the aim of which is to lay the foundations of algebraic geometry over the free metabelian Lie algebra $F$. In the current paper we introduce the notion of a metabelian Lie $U$-algebra and establish connections between metabelian Lie $U$-algebras and special matrix Lie algebras. We define the $\Delta $-localisation of a metabelian Lie $U$-algebra $A$ and the direct module extension of the Fitting's radical of $A$ and show that these algebras lie in the universal closure of $A$.
---
PDF链接:
https://arxiv.org/pdf/0710.3871


雷达卡



京公网安备 11010802022788号







