摘要翻译:
本文是三个系列中的第二个,其目的是在一个自由的metabelian李代数上构造代数几何。对于有限域$K$上有限秩的自由元贝尔李代数$R\ge2$的泛闭包,我们在李代数语言$L$和由$F$中的常数丰富的语言$L_{F}$中找到了一组方便的公理。我们给出了在$L$和$L_{F_r}中由$F_r$的泛闭包得到的有限生成代数的结构,$F_r$上的不可约代数集的结构和相应的坐标代数。我们还证明了有限域上自由metabelian李代数的泛理论在两种语言中都是可判定的。
---
英文标题:
《Algebraic Geometry over Free Metabelian Lie Algebra II: Finite Field
Case》
---
作者:
E. Daniyarova, I. Kazachkov, V. Remeslennikov
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Logic 逻辑
分类描述:Logic, set theory, point-set topology, formal mathematics
逻辑,集合论,点集拓扑,形式数学
--
---
英文摘要:
This paper is the second in a series of three, the aim of which is to construct algebraic geometry over a free metabelian Lie algebra $F$. For the universal closure of free metabelian Lie algebra of finite rank $r \ge 2$ over a finite field $k$ we find a convenient set of axioms in the language of Lie algebras $L$ and the language $L_{F}$ enriched by constants from $F$. We give a description of: * The structure of finitely generated algebras from the universal closure of $F_r$ in both $L$ and $L_{F_r}$ * The structure of irreducible algebraic sets over $F_r $ and respective coordinate algebras. We also prove that the universal theory of a free metabelian Lie algebra over a finite field is decidable in both languages.
---
PDF链接:
https://arxiv.org/pdf/0710.3872


雷达卡



京公网安备 11010802022788号







