摘要翻译:
本文解决了Kardaras和Robertson[Ann.appl.probab.22(2012)1576-1610]中提出的一个问题:在对基础资产的协方差结构缺乏精确知识的市场中,如何以稳健增长最优的方式进行投资。在一类适当的可容许协方差结构中,我们用完全非线性椭圆算子的主特征值及其相关特征函数的广义形式刻画了最优交易策略,并对非支配概率测度的集合进行了略微的限制。
---
英文标题:
《Robust maximization of asymptotic growth under covariance uncertainty》
---
作者:
Erhan Bayraktar, Yu-Jui Huang
---
最新提交年份:
2013
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Portfolio Management 项目组合管理
分类描述:Security selection and optimization, capital allocation, investment strategies and performance measurement
证券选择与优化、资本配置、投资策略与绩效评价
--
一级分类:Mathematics 数学
二级分类:Optimization and Control 优化与控制
分类描述:Operations research, linear programming, control theory, systems theory, optimal control, game theory
运筹学,线性规划,控制论,系统论,最优控制,博弈论
--
一级分类:Mathematics 数学
二级分类:Probability 概率
分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory
概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论
--
---
英文摘要:
This paper resolves a question proposed in Kardaras and Robertson [Ann. Appl. Probab. 22 (2012) 1576-1610]: how to invest in a robust growth-optimal way in a market where precise knowledge of the covariance structure of the underlying assets is unavailable. Among an appropriate class of admissible covariance structures, we characterize the optimal trading strategy in terms of a generalized version of the principal eigenvalue of a fully nonlinear elliptic operator and its associated eigenfunction, by slightly restricting the collection of nondominated probability measures.
---
PDF链接:
https://arxiv.org/pdf/1107.2988


雷达卡



京公网安备 11010802022788号







