楼主: 可人4
361 0

[统计数据] 与广义相空间相关的多重分形谱 恒温统计学 [推广有奖]

  • 0关注
  • 2粉丝

会员

学术权威

76%

还不是VIP/贵宾

-

威望
10
论坛币
15 个
通用积分
49.1643
学术水平
0 点
热心指数
1 点
信用等级
0 点
经验
24465 点
帖子
4070
精华
0
在线时间
0 小时
注册时间
2022-2-24
最后登录
2022-4-15

楼主
可人4 在职认证  发表于 2022-3-7 21:59:25 来自手机 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要翻译:
我们考虑了一个具有特定分形维数d$的自相似相空间,它以谱函数F(d)$分布。结果表明,相关的热统计是由非扩展统计的Tsallis形式所支配的,其中不可加性参数等于${bar\tau}(q)\equiv1/\tau(q)>1$,多重分形函数$\tau(q)=qd_q-f(d_q)$是用[1,infty)$中的多重分形参数$q\确定的比热。这样,均分定律就被证明发生了。通过对多重分形谱函数f(d)$的优化,导出了统计权重与系统复杂度之间的关系。结果表明,统计权重指数$\tau(q)$可以用Tsallis指数和Kaniadakis指数变形的双曲切线来描述任意多重分形相空间。证明了谱函数$f(d)$从最小值$f=-1$at$d=0$单调增加到最大值1$f=1$at$d=1$。同时,单分形的数量随着相空间体积的增加而增加,在小维D$时,单分形的数量下降到1$。
---
英文标题:
《Multifractal spectrum of phase space related to generalized
  thermostatistics》
---
作者:
A. I. Olemskoi, V. O. Kharchenko, V. N. Borisyuk
---
最新提交年份:
2007
---
分类信息:

一级分类:Physics        物理学
二级分类:Statistical Mechanics        统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--

---
英文摘要:
  We consider a self-similar phase space with specific fractal dimension $d$ being distributed with spectrum function $f(d)$. Related thermostatistics is shown to be governed by the Tsallis formalism of the non-extensive statistics, where the non-additivity parameter is equal to ${\bar\tau}(q)\equiv 1/\tau(q)>1$, and the multifractal function $\tau(q)= qd_q-f(d_q)$ is the specific heat determined with multifractal parameter $q\in [1,\infty)$. In this way, the equipartition law is shown to take place. Optimization of the multifractal spectrum function $f(d)$ derives the relation between the statistical weight and the system complexity. It is shown the statistical weight exponent $\tau(q)$ can be modeled by hyperbolic tangent deformed in accordance with both Tsallis and Kaniadakis exponentials to describe arbitrary multifractal phase space explicitly. The spectrum function $f(d)$ is proved to increase monotonically from minimum value $f=-1$ at $d=0$ to maximum one $f=1$ at $d=1$. At the same time, the number of monofractals increases with growth of the phase space volume at small dimensions $d$ and falls down in the limit $d\to 1$.
---
PDF链接:
https://arxiv.org/pdf/708.187
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:空间相关 相空间 统计学 Multifractal Optimization 函数 切线 双曲 证明 具有

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
扫码
拉您进交流群
GMT+8, 2026-1-29 22:08