摘要翻译:
当吸收壁以恒定速度$v$运动时,分枝随机游动会随着吸收壁的速度$v$的变化而发生相变。在临界速度$v_c$以下,种群具有非零的生存概率,当种群存活时,其大小呈指数增长。我们研究种群的历史条件是在某个最后时刻有一个幸存者$T$。我们研究了当$T$较大时,$V<V_C$的准平稳状态。为了做到这一点,我们可以构造一个修正的随机过程,它等价于最初的过程,条件是在最后时刻有一个幸存者$T$。然后我们用这个结构证明了当$v\到v_c$时,准平稳区域的性质是普遍的。我们还精确地解决了该问题的一个简单版本,即指数模型,对该模型的准平稳区的研究可以归结为对单个一维映射的分析。
---
英文标题:
《Quasi-stationary regime of a branching random walk in presence of an
absorbing wall》
---
作者:
Damien Simon and Bernard Derrida
---
最新提交年份:
2008
---
分类信息:
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
一级分类:Quantitative Biology 数量生物学
二级分类:Populations and Evolution 种群与进化
分类描述:Population dynamics, spatio-temporal and epidemiological models, dynamic speciation, co-evolution, biodiversity, foodwebs, aging; molecular evolution and phylogeny; directed evolution; origin of life
种群动力学;时空和流行病学模型;动态物种形成;协同进化;生物多样性;食物网;老龄化;分子进化和系统发育;定向进化;生命起源
--
---
英文摘要:
A branching random walk in presence of an absorbing wall moving at a constant velocity $v$ undergoes a phase transition as the velocity $v$ of the wall varies. Below the critical velocity $v_c$, the population has a non-zero survival probability and when the population survives its size grows exponentially. We investigate the histories of the population conditioned on having a single survivor at some final time $T$. We study the quasi-stationary regime for $v<v_c$ when $T$ is large. To do so, one can construct a modified stochastic process which is equivalent to the original process conditioned on having a single survivor at final time $T$. We then use this construction to show that the properties of the quasi-stationary regime are universal when $v\to v_c$. We also solve exactly a simple version of the problem, the exponential model, for which the study of the quasi-stationary regime can be reduced to the analysis of a single one-dimensional map.
---
PDF链接:
https://arxiv.org/pdf/710.3689


雷达卡



京公网安备 11010802022788号







