摘要翻译:
多项式环中零维理想的Hilbert格式可以用合适的仿射开子格式复盖,仿射开子格式的构造是用边界基实现的。此外,边界基被证明是描述系数不精确时零维理想的一个极好的工具。在这种情况下,它们相对于Groebner基显示出明显的优势,然而,Groebner基也可以用于Hilbert格式的研究,因为它们为构造适当的层提供了工具。本文比较了Groebner基格式和border基格式。证明了Groebner基格式及其相关的泛族可以看作是加权射影格式。我们的方法的第一个结果是证明了所有定义Groebner基格式的理想和用Buchberger算法得到的理想是相等的。另一个结果是,如果Groebner基格式中的原点(即唯一单体理想对应的点)是光滑的,则该格式本身同构于仿射空间。这一事实代表了边界基和Groebner基方案之间的显著区别。由于寻找Groebner基格式和相应的边界基格式相等的情况是很自然的,我们解决了这个问题,提供了一个答案,并展示了一些结果。最后讨论了尚待解决的问题。
---
英文标题:
《On Border Basis and Groebner Basis Schemes》
---
作者:
Lorenzo Robbiano
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Commutative Algebra 交换代数
分类描述:Commutative rings, modules, ideals, homological algebra, computational aspects, invariant theory, connections to algebraic geometry and combinatorics
交换环,模,理想,同调代数,计算方面,不变理论,与代数几何和组合学的联系
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
Hilbert schemes of zero-dimensional ideals in a polynomial ring can be covered with suitable affine open subschemes whose construction is achieved using border bases. Moreover, border bases have proved to be an excellent tool for describing zero-dimensional ideals when the coefficients are inexact. And in this situation they show a clear advantage with respect to Groebner bases which, nevertheless, can also be used in the study of Hilbert schemes, since they provide tools for constructing suitable stratifications. In this paper we compare Groebner basis schemes with border basis schemes. It is shown that Groebner basis schemes and their associated universal families can be viewed as weighted projective schemes. A first consequence of our approach is the proof that all the ideals which define a Groebner basis scheme and are obtained using Buchberger's Algorithm, are equal. Another result is that if the origin (i.e. the point corresponding to the unique monomial ideal) in the Groebner basis scheme is smooth, then the scheme itself is isomorphic to an affine space. This fact represents a remarkable difference between border basis and Groebner basis schemes. Since it is natural to look for situations where a Groebner basis scheme and the corresponding border basis scheme are equal, we address the issue, provide an answer, and exhibit some consequences. Open problems are discussed at the end of the paper.
---
PDF链接:
https://arxiv.org/pdf/0802.2793


雷达卡



京公网安备 11010802022788号







