摘要翻译:
由Kontsevich和Zagier引入的周期形成了一个包含所有代数数和若干超越量的复数类。关于周期的定性性质,人们知之甚少。在本文中,我们比较了周期和由计算复杂性引起的实数层次。特别地,我们证明了周期可以用初等有理Cauchy序列有效地逼近。作为一个应用,我们展示了一个不是周期的可计算实数。
---
英文标题:
《Periods and elementary real numbers》
---
作者:
Masahiko Yoshinaga
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Number Theory 数论
分类描述:Prime numbers, diophantine equations, analytic number theory, algebraic number theory, arithmetic geometry, Galois theory
素数,丢番图方程,解析数论,代数数论,算术几何,伽罗瓦理论
--
---
英文摘要:
The periods, introduced by Kontsevich and Zagier, form a class of complex numbers which contains all algebraic numbers and several transcendental quantities. Little has been known about qualitative properties of periods. In this paper, we compare the periods with hierarchy of real numbers induced from computational complexities. In particular we prove that periods can be effectively approximated by elementary rational Cauchy sequences. As an application, we exhibit a computable real number which is not a period.
---
PDF链接:
https://arxiv.org/pdf/0805.0349


雷达卡



京公网安备 11010802022788号







