摘要翻译:
本文提出了一种利用无线信号检测“一起”行走的人群(群体移动性)和“单独”行走的人群(个体移动性)的新方法。我们利用多个无线嗅探器从使用移动设备的人身上广泛收集移动数据,并基于无线指纹识别相似性和群体移动性。我们提出了一种将嗅探器收集到的无线数据包初步转换为人的无线指纹的方法。然后,该方法通过寻找特定时间(动态/静态)的人群状态和动态人群的空间相关性来确定群体移动性。为了评估我们的方法的可行性,我们进行了真实世界的实验,从10个携带蓝牙低能量(BLE)信标的参与者那里收集数据,在办公室环境中进行了为期两周的实验。该方法的空间相关性平均为95%,群体移动性平均为79%。该方法成功地实现了:1)检测群体和个体的移动;2)根据群体的移动特性生成社会网络。
---
英文标题:
《Together or Alone: Detecting Group Mobility with Wireless Fingerprints》
---
作者:
G\"urkan Solmaz and Fang-Jing Wu
---
最新提交年份:
2018
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Networking and Internet Architecture 网络和因特网体系结构
分类描述:Covers all aspects of computer communication networks, including network architecture and design, network protocols, and internetwork standards (like TCP/IP). Also includes topics, such as web caching, that are directly relevant to Internet architecture and performance. Roughly includes all of ACM Subject Class C.2 except C.2.4, which is more likely to have Distributed, Parallel, and Cluster Computing as the primary subject area.
涵盖计算机通信网络的所有方面,包括网络体系结构和设计、网络协议和网络间标准(如TCP/IP)。还包括与Internet体系结构和性能直接相关的主题,如web缓存。大致包括除C.2.4以外的所有ACM主题类C.2,后者更有可能将分布式、并行和集群计算作为主要主题领域。
--
一级分类:Electrical Engineering and Systems Science 电气工程与系统科学
二级分类:Signal Processing 信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--
---
英文摘要:
This paper proposes a novel approach for detecting groups of people that walk "together" (group mobility) as well as the people who walk "alone" (individual movements) using wireless signals. We exploit multiple wireless sniffers to pervasively collect human mobility data from people with mobile devices and identify similarities and the group mobility based on the wireless fingerprints. We propose a method which initially converts the wireless packets collected by the sniffers into people's wireless fingerprints. The method then determines group mobility by finding the statuses of people at certain times (dynamic/static) and the space correlation of dynamic people. To evaluate the feasibility of our approach, we conduct real world experiments by collecting data from 10 participants carrying Bluetooth Low Energy (BLE) beacons in an office environment for a two-week period. The proposed approach captures space correlation with 95% and group mobility with 79% accuracies on average. With the proposed approach we successfully 1) detect the groups and individual movements and 2) generate social networks based on the group mobility characteristics.
---
PDF链接:
https://arxiv.org/pdf/1808.01023


雷达卡



京公网安备 11010802022788号







