摘要翻译:
本文证明了有理Cherednik代数H_{0,1}(S_n)不可约表示的实性的一个判据。证明了Calogero-Moser空间C_n的实轨迹的一个判据是由-Ginzburg有限映射到C^n/S_n乘以C^n/S_n,恢复了Mikhin、Tarasov和Varchenko[MTV2]的结果。由此,我们得到了KP族秩一双谱解的Wilson adelic Grassmannian实轨迹的一个判据。利用adelic Grassmanian的Wilson第一参数化,给出了拟多项式空间实基上[MTV2]的一个结果的新证明。Grassmannians的Shapiro猜想等价于Calogero-Moser空间的一个特例,即C^n/S_n\乘0上的Upsilon纤维。
---
英文标题:
《The real loci of Calogero-Moser spaces, representations of rational
Cherednik algebras and the Shapiro conjecture》
---
作者:
Iain Gordon, Emil Horozov and Milen Yakimov
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Representation Theory 表象理论
分类描述:Linear representations of algebras and groups, Lie theory, associative algebras, multilinear algebra
代数和群的线性表示,李理论,结合代数,多重线性代数
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Combinatorics 组合学
分类描述:Discrete mathematics, graph theory, enumeration, combinatorial optimization, Ramsey theory, combinatorial game theory
离散数学,图论,计数,组合优化,拉姆齐理论,组合对策论
--
---
英文摘要:
We prove a criterion for the reality of irreducible representations of the rational Cherednik algebras H_{0,1}(S_n). This is shown to imply a criterion for the real loci of the Calogero-Moser spaces C_n in terms of the Etingof-Ginzburg finite maps \Upsilon \colon C_n \to C^n/S_n \times C^n/S_n, recovering a result of Mikhin, Tarasov, and Varchenko [MTV2]. As a consequence we obtain a criterion for the real locus of the Wilson's adelic Grassmannian of rank one bispectral solutions of the KP hierarchy. Using Wilson's first parametrisation of the adelic Grassmannian, we give a new proof of a result of [MTV2] on real bases of spaces of quasi polynomials. The Shapiro Conjecture for Grassmannians is equivalent to a special case of our result for Calogero-Moser spaces, namely for the fibres of \Upsilon over C^n/S_n \times 0.
---
PDF链接:
https://arxiv.org/pdf/0711.4336


雷达卡



京公网安备 11010802022788号







