楼主: a125685446
1121 3

[学科前沿] 跪求! [推广有奖]

  • 0关注
  • 0粉丝

VIP1

大专生

58%

还不是VIP/贵宾

-

威望
0
论坛币
2282 个
通用积分
0
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
547 点
帖子
45
精华
0
在线时间
21 小时
注册时间
2007-8-22
最后登录
2016-6-5

楼主
a125685446 发表于 2010-5-12 13:02:24 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
跪求shapiro-Wilk 检验W统计量的表达式!跪求
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:shapiro wilk 表达式 API 统计量 表达式 统计

沙发
epoh 发表于 2010-5-12 13:28:37

藤椅
a125685446 发表于 2010-5-13 08:24:41
是不是这个表达式有点问题,感觉!

In statistics, the Shapiro–Wilk test tests the null hypothesis that a sample x1, ..., xn came from a normally distributed population. It was published in 1965 by Samuel Shapiro and Martin Wilk.[1]

The test statistic is:


where

x(i) (with parentheses enclosing the subscript index i) is the ith order statistic, i.e., the ith-smallest number in the sample;
x = (x1 + ... + xn) / n is the sample mean;
the constants ai are given by[2]

where

and m1, ..., mn are the expected values of the order statistics of independent and identically-distributed random variables sampled from the standard normal distribution, and V is the covariance matrix of those order statistics.
The user may reject the null hypothesis if W is too small.[3]

It can be interpreted via a Q-Q plot.

板凳
epoh 发表于 2010-5-13 09:45:17
normality.pdf   page 9

normality.pdf (443.22 KB)

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注jltj
拉您入交流群
GMT+8, 2026-1-9 04:51