摘要翻译:
Kirillov描述了PSL_{2}(C)的有限子群的一个McKay对应,它将一个仿射Dynkin颤动与射影线p^1上的等变束及其表示之间的一个导出的等价性联系到每个高度函数上。对于不同高度函数的等价性,然后由颤振表示的反射函子联系起来。本文的主要目的是为P^1的余切丛建立一个类似的故事。我们证明了每一个高度函数在余切丛T*P^1上的等变束与仿射Dynkin颤振的预射影代数上的模之间产生一个导出的等价性。这些不同的等价由球面扭转联系起来,球面扭转取代了p^1的反射函子。
---
英文标题:
《The projective McKay correspondence》
---
作者:
Christopher Brav
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Representation Theory 表象理论
分类描述:Linear representations of algebras and groups, Lie theory, associative algebras, multilinear algebra
代数和群的线性表示,李理论,结合代数,多重线性代数
--
---
英文摘要:
Kirillov has described a McKay correspondence for finite subgroups of PSL_{2}(C) that associates to each `height' function an affine Dynkin quiver together with a derived equivalence between equivariant sheaves on the projective line P^1 and representations of this quiver. The equivalences for different height functions are then related by reflection functors for quiver representations. The main goal of this paper is to develop an analogous story for the cotangent bundle of P^1. We show that each height function gives rise to a derived equivalence between equivariant sheaves on the cotangent bundle T*P^1 and modules over the preprojective algebra of an affine Dynkin quiver. These different equivalences are related by spherical twists, which take the place of the reflection functors for P^1.
---
PDF链接:
https://arxiv.org/pdf/0812.0286


雷达卡



京公网安备 11010802022788号







