摘要翻译:
我们提出了Gonzales-Sprinberg和Verdier在维2中描述的几何McKay对应关系的三维推广。当G是abelian且C^3/G有单个孤立奇点时,我们详细地研究了它。更确切地说,我们证明了Bridgeland-King-Reid导出的范畴等价性在G的不可约表示和G-Hilb(C^3)的例外集的子方案之间诱导了一种自然的几何对应关系。这一对应似乎与里德的食谱有关。
---
英文标题:
《A derived approach to geometric McKay correspondence in dimension three》
---
作者:
Sabin Cautis, Timothy Logvinenko
---
最新提交年份:
2012
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
We propose a three dimensional generalization of the geometric McKay correspondence described by Gonzales-Sprinberg and Verdier in dimension two. We work it out in detail when G is abelian and C^3/G has a single isolated singularity. More precisely, we show that the Bridgeland-King-Reid derived category equivalence induces a natural geometric correspondence between irreducible representations of G and subschemes of the exceptional set of G-Hilb (C^3). This correspondence appears to be related to Reid's recipe.
---
PDF链接:
https://arxiv.org/pdf/0803.2990


雷达卡



京公网安备 11010802022788号







