摘要翻译:
经典的McKay对应从SU(2)的有限子群G的表示理论和G的仿射平面商的最小分辨率几何中建立了一个显式的联系。本文讨论了McKay对应在G被SU(1,1)的泛覆盖的一个共紧离散子群代替时的一个可能的推广,使得它在PSU(1,1)中的像是亏格商为0的共紧fuchsian群。我们建立了开代数曲面上G的一类有限维酉表示与向量丛之间的对应关系,并给出了与G正则相关的平凡正则类。
---
英文标题:
《McKay's correspondence for cocompact discrete subgroups of SU(1,1)》
---
作者:
Igor V. Dolgachev
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Geometric Topology 几何拓扑
分类描述:Manifolds, orbifolds, polyhedra, cell complexes, foliations, geometric structures
流形,轨道,多面体,细胞复合体,叶状,几何结构
--
---
英文摘要:
The classical McKay correspondence establishes an explicit link from the representation theory of a finite subgroup G of SU(2) and the geometry of the minimal resolution of the quotient of the affine plane by G. In this paper we discuss a possible generalization of the McKay correspondence to the case when G is replaced with a cocompact discrete subgroup of the universal cover of SU(1,1) such that its image in PSU(1,1) is a cocompact fuchsian group with quotient of genus 0. We establish a correspondence between a certain class of finite-dimensional unitary representations of G and vector bundles on an open algebraic surface with the trivial canonical class canonically associated to G.
---
PDF链接:
https://arxiv.org/pdf/0710.2253


雷达卡



京公网安备 11010802022788号







